![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxdusgr0edgnelALT | Structured version Visualization version GIF version |
Description: Alternate proof of vtxdusgr0edgnel 29017, not based on vtxduhgr0edgnel 29016. A vertex in a simple graph has degree 0 if there is no edge incident with this vertex. (Contributed by AV, 17-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
vtxdushgrfvedg.v | β’ π = (VtxβπΊ) |
vtxdushgrfvedg.e | β’ πΈ = (EdgβπΊ) |
vtxdushgrfvedg.d | β’ π· = (VtxDegβπΊ) |
Ref | Expression |
---|---|
vtxdusgr0edgnelALT | β’ ((πΊ β USGraph β§ π β π) β ((π·βπ) = 0 β Β¬ βπ β πΈ π β π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtxdushgrfvedg.v | . . . 4 β’ π = (VtxβπΊ) | |
2 | vtxdushgrfvedg.e | . . . 4 β’ πΈ = (EdgβπΊ) | |
3 | vtxdushgrfvedg.d | . . . 4 β’ π· = (VtxDegβπΊ) | |
4 | 1, 2, 3 | vtxdusgrfvedg 29013 | . . 3 β’ ((πΊ β USGraph β§ π β π) β (π·βπ) = (β―β{π β πΈ β£ π β π})) |
5 | 4 | eqeq1d 2732 | . 2 β’ ((πΊ β USGraph β§ π β π) β ((π·βπ) = 0 β (β―β{π β πΈ β£ π β π}) = 0)) |
6 | fvex 6905 | . . . . 5 β’ (EdgβπΊ) β V | |
7 | 2, 6 | eqeltri 2827 | . . . 4 β’ πΈ β V |
8 | 7 | rabex 5333 | . . 3 β’ {π β πΈ β£ π β π} β V |
9 | hasheq0 14329 | . . 3 β’ ({π β πΈ β£ π β π} β V β ((β―β{π β πΈ β£ π β π}) = 0 β {π β πΈ β£ π β π} = β )) | |
10 | 8, 9 | mp1i 13 | . 2 β’ ((πΊ β USGraph β§ π β π) β ((β―β{π β πΈ β£ π β π}) = 0 β {π β πΈ β£ π β π} = β )) |
11 | rabeq0 4385 | . . 3 β’ ({π β πΈ β£ π β π} = β β βπ β πΈ Β¬ π β π) | |
12 | ralnex 3070 | . . . 4 β’ (βπ β πΈ Β¬ π β π β Β¬ βπ β πΈ π β π) | |
13 | 12 | a1i 11 | . . 3 β’ ((πΊ β USGraph β§ π β π) β (βπ β πΈ Β¬ π β π β Β¬ βπ β πΈ π β π)) |
14 | 11, 13 | bitrid 282 | . 2 β’ ((πΊ β USGraph β§ π β π) β ({π β πΈ β£ π β π} = β β Β¬ βπ β πΈ π β π)) |
15 | 5, 10, 14 | 3bitrd 304 | 1 β’ ((πΊ β USGraph β§ π β π) β ((π·βπ) = 0 β Β¬ βπ β πΈ π β π)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 βwral 3059 βwrex 3068 {crab 3430 Vcvv 3472 β c0 4323 βcfv 6544 0cc0 11114 β―chash 14296 Vtxcvtx 28521 Edgcedg 28572 USGraphcusgr 28674 VtxDegcvtxdg 28987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-card 9938 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-n0 12479 df-xnn0 12551 df-z 12565 df-uz 12829 df-xadd 13099 df-fz 13491 df-hash 14297 df-edg 28573 df-uhgr 28583 df-ushgr 28584 df-upgr 28607 df-umgr 28608 df-uspgr 28675 df-usgr 28676 df-vtxdg 28988 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |