MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdusgr0edgnelALT Structured version   Visualization version   GIF version

Theorem vtxdusgr0edgnelALT 29532
Description: Alternate proof of vtxdusgr0edgnel 29531, not based on vtxduhgr0edgnel 29530. A vertex in a simple graph has degree 0 if there is no edge incident with this vertex. (Contributed by AV, 17-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
vtxdushgrfvedg.v 𝑉 = (Vtx‘𝐺)
vtxdushgrfvedg.e 𝐸 = (Edg‘𝐺)
vtxdushgrfvedg.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
vtxdusgr0edgnelALT ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑒𝐸 𝑈𝑒))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑈,𝑒   𝑒,𝑉
Allowed substitution hint:   𝐷(𝑒)

Proof of Theorem vtxdusgr0edgnelALT
StepHypRef Expression
1 vtxdushgrfvedg.v . . . 4 𝑉 = (Vtx‘𝐺)
2 vtxdushgrfvedg.e . . . 4 𝐸 = (Edg‘𝐺)
3 vtxdushgrfvedg.d . . . 4 𝐷 = (VtxDeg‘𝐺)
41, 2, 3vtxdusgrfvedg 29527 . . 3 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝐷𝑈) = (♯‘{𝑒𝐸𝑈𝑒}))
54eqeq1d 2742 . 2 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ((𝐷𝑈) = 0 ↔ (♯‘{𝑒𝐸𝑈𝑒}) = 0))
6 fvex 6933 . . . . 5 (Edg‘𝐺) ∈ V
72, 6eqeltri 2840 . . . 4 𝐸 ∈ V
87rabex 5357 . . 3 {𝑒𝐸𝑈𝑒} ∈ V
9 hasheq0 14412 . . 3 ({𝑒𝐸𝑈𝑒} ∈ V → ((♯‘{𝑒𝐸𝑈𝑒}) = 0 ↔ {𝑒𝐸𝑈𝑒} = ∅))
108, 9mp1i 13 . 2 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ((♯‘{𝑒𝐸𝑈𝑒}) = 0 ↔ {𝑒𝐸𝑈𝑒} = ∅))
11 rabeq0 4411 . . 3 ({𝑒𝐸𝑈𝑒} = ∅ ↔ ∀𝑒𝐸 ¬ 𝑈𝑒)
12 ralnex 3078 . . . 4 (∀𝑒𝐸 ¬ 𝑈𝑒 ↔ ¬ ∃𝑒𝐸 𝑈𝑒)
1312a1i 11 . . 3 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (∀𝑒𝐸 ¬ 𝑈𝑒 ↔ ¬ ∃𝑒𝐸 𝑈𝑒))
1411, 13bitrid 283 . 2 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ({𝑒𝐸𝑈𝑒} = ∅ ↔ ¬ ∃𝑒𝐸 𝑈𝑒))
155, 10, 143bitrd 305 1 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ((𝐷𝑈) = 0 ↔ ¬ ∃𝑒𝐸 𝑈𝑒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  c0 4352  cfv 6573  0cc0 11184  chash 14379  Vtxcvtx 29031  Edgcedg 29082  USGraphcusgr 29184  VtxDegcvtxdg 29501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-xadd 13176  df-fz 13568  df-hash 14380  df-edg 29083  df-uhgr 29093  df-ushgr 29094  df-upgr 29117  df-umgr 29118  df-uspgr 29185  df-usgr 29186  df-vtxdg 29502
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator