| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxdusgr0edgnelALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of vtxdusgr0edgnel 29441, not based on vtxduhgr0edgnel 29440. A vertex in a simple graph has degree 0 if there is no edge incident with this vertex. (Contributed by AV, 17-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| vtxdushgrfvedg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| vtxdushgrfvedg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| vtxdushgrfvedg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| Ref | Expression |
|---|---|
| vtxdusgr0edgnelALT | ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ((𝐷‘𝑈) = 0 ↔ ¬ ∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdushgrfvedg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | vtxdushgrfvedg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | vtxdushgrfvedg.d | . . . 4 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
| 4 | 1, 2, 3 | vtxdusgrfvedg 29437 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (𝐷‘𝑈) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒})) |
| 5 | 4 | eqeq1d 2731 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ((𝐷‘𝑈) = 0 ↔ (♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) = 0)) |
| 6 | fvex 6835 | . . . . 5 ⊢ (Edg‘𝐺) ∈ V | |
| 7 | 2, 6 | eqeltri 2824 | . . . 4 ⊢ 𝐸 ∈ V |
| 8 | 7 | rabex 5278 | . . 3 ⊢ {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ∈ V |
| 9 | hasheq0 14270 | . . 3 ⊢ ({𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ∈ V → ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) = 0 ↔ {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} = ∅)) | |
| 10 | 8, 9 | mp1i 13 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ((♯‘{𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒}) = 0 ↔ {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} = ∅)) |
| 11 | rabeq0 4339 | . . 3 ⊢ ({𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} = ∅ ↔ ∀𝑒 ∈ 𝐸 ¬ 𝑈 ∈ 𝑒) | |
| 12 | ralnex 3055 | . . . 4 ⊢ (∀𝑒 ∈ 𝐸 ¬ 𝑈 ∈ 𝑒 ↔ ¬ ∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒) | |
| 13 | 12 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → (∀𝑒 ∈ 𝐸 ¬ 𝑈 ∈ 𝑒 ↔ ¬ ∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒)) |
| 14 | 11, 13 | bitrid 283 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ({𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} = ∅ ↔ ¬ ∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒)) |
| 15 | 5, 10, 14 | 3bitrd 305 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ((𝐷‘𝑈) = 0 ↔ ¬ ∃𝑒 ∈ 𝐸 𝑈 ∈ 𝑒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3394 Vcvv 3436 ∅c0 4284 ‘cfv 6482 0cc0 11009 ♯chash 14237 Vtxcvtx 28941 Edgcedg 28992 USGraphcusgr 29094 VtxDegcvtxdg 29411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-xadd 13015 df-fz 13411 df-hash 14238 df-edg 28993 df-uhgr 29003 df-ushgr 29004 df-upgr 29027 df-umgr 29028 df-uspgr 29095 df-usgr 29096 df-vtxdg 29412 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |