Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressmulgnn Structured version   Visualization version   GIF version

Theorem ressmulgnn 31579
Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 12-Jun-2017.)
Hypotheses
Ref Expression
ressmulgnn.1 𝐻 = (𝐺s 𝐴)
ressmulgnn.2 𝐴 ⊆ (Base‘𝐺)
ressmulgnn.3 = (.g𝐺)
ressmulgnn.4 𝐼 = (invg𝐺)
Assertion
Ref Expression
ressmulgnn ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))

Proof of Theorem ressmulgnn
StepHypRef Expression
1 ressmulgnn.2 . . . 4 𝐴 ⊆ (Base‘𝐺)
2 ressmulgnn.1 . . . . 5 𝐻 = (𝐺s 𝐴)
3 eqid 2736 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
42, 3ressbas2 17046 . . . 4 (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘𝐻))
51, 4ax-mp 5 . . 3 𝐴 = (Base‘𝐻)
6 eqid 2736 . . 3 (+g𝐻) = (+g𝐻)
7 eqid 2736 . . 3 (.g𝐻) = (.g𝐻)
8 fvex 6838 . . . . . 6 (Base‘𝐺) ∈ V
98, 1ssexi 5266 . . . . 5 𝐴 ∈ V
10 eqid 2736 . . . . . 6 (+g𝐺) = (+g𝐺)
112, 10ressplusg 17097 . . . . 5 (𝐴 ∈ V → (+g𝐺) = (+g𝐻))
129, 11ax-mp 5 . . . 4 (+g𝐺) = (+g𝐻)
13 seqeq2 13826 . . . 4 ((+g𝐺) = (+g𝐻) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
1412, 13ax-mp 5 . . 3 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋}))
155, 6, 7, 14mulgnn 18804 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
16 simpr 485 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → 𝑋𝐴)
171, 16sselid 3930 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → 𝑋 ∈ (Base‘𝐺))
18 ressmulgnn.3 . . . 4 = (.g𝐺)
19 eqid 2736 . . . 4 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
203, 10, 18, 19mulgnn 18804 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
2117, 20syldan 591 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
2215, 21eqtr4d 2779 1 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  Vcvv 3441  wss 3898  {csn 4573   × cxp 5618  cfv 6479  (class class class)co 7337  1c1 10973  cn 12074  seqcseq 13822  Basecbs 17009  s cress 17038  +gcplusg 17059  invgcminusg 18674  .gcmg 18796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-n0 12335  df-z 12421  df-uz 12684  df-seq 13823  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulg 18797
This theorem is referenced by:  ressmulgnn0  31580
  Copyright terms: Public domain W3C validator