MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressmulgnn Structured version   Visualization version   GIF version

Theorem ressmulgnn 18989
Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 12-Jun-2017.)
Hypotheses
Ref Expression
ressmulgnn.1 𝐻 = (𝐺s 𝐴)
ressmulgnn.2 𝐴 ⊆ (Base‘𝐺)
ressmulgnn.3 = (.g𝐺)
ressmulgnn.4 𝐼 = (invg𝐺)
Assertion
Ref Expression
ressmulgnn ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))

Proof of Theorem ressmulgnn
StepHypRef Expression
1 ressmulgnn.2 . . . 4 𝐴 ⊆ (Base‘𝐺)
2 ressmulgnn.1 . . . . 5 𝐻 = (𝐺s 𝐴)
3 eqid 2731 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
42, 3ressbas2 17149 . . . 4 (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘𝐻))
51, 4ax-mp 5 . . 3 𝐴 = (Base‘𝐻)
6 eqid 2731 . . 3 (+g𝐻) = (+g𝐻)
7 eqid 2731 . . 3 (.g𝐻) = (.g𝐻)
8 fvex 6835 . . . . . 6 (Base‘𝐺) ∈ V
98, 1ssexi 5258 . . . . 5 𝐴 ∈ V
10 eqid 2731 . . . . . 6 (+g𝐺) = (+g𝐺)
112, 10ressplusg 17195 . . . . 5 (𝐴 ∈ V → (+g𝐺) = (+g𝐻))
129, 11ax-mp 5 . . . 4 (+g𝐺) = (+g𝐻)
13 seqeq2 13912 . . . 4 ((+g𝐺) = (+g𝐻) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
1412, 13ax-mp 5 . . 3 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋}))
155, 6, 7, 14mulgnn 18988 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
16 simpr 484 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → 𝑋𝐴)
171, 16sselid 3927 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → 𝑋 ∈ (Base‘𝐺))
18 ressmulgnn.3 . . . 4 = (.g𝐺)
19 eqid 2731 . . . 4 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
203, 10, 18, 19mulgnn 18988 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
2117, 20syldan 591 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
2215, 21eqtr4d 2769 1 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897  {csn 4573   × cxp 5612  cfv 6481  (class class class)co 7346  1c1 11007  cn 12125  seqcseq 13908  Basecbs 17120  s cress 17141  +gcplusg 17161  invgcminusg 18847  .gcmg 18980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-seq 13909  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulg 18981
This theorem is referenced by:  ressmulgnn0  18990
  Copyright terms: Public domain W3C validator