Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressmulgnn Structured version   Visualization version   GIF version

Theorem ressmulgnn 30670
Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 12-Jun-2017.)
Hypotheses
Ref Expression
ressmulgnn.1 𝐻 = (𝐺s 𝐴)
ressmulgnn.2 𝐴 ⊆ (Base‘𝐺)
ressmulgnn.3 = (.g𝐺)
ressmulgnn.4 𝐼 = (invg𝐺)
Assertion
Ref Expression
ressmulgnn ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))

Proof of Theorem ressmulgnn
StepHypRef Expression
1 ressmulgnn.2 . . . 4 𝐴 ⊆ (Base‘𝐺)
2 ressmulgnn.1 . . . . 5 𝐻 = (𝐺s 𝐴)
3 eqid 2821 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
42, 3ressbas2 16555 . . . 4 (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘𝐻))
51, 4ax-mp 5 . . 3 𝐴 = (Base‘𝐻)
6 eqid 2821 . . 3 (+g𝐻) = (+g𝐻)
7 eqid 2821 . . 3 (.g𝐻) = (.g𝐻)
8 fvex 6683 . . . . . 6 (Base‘𝐺) ∈ V
98, 1ssexi 5226 . . . . 5 𝐴 ∈ V
10 eqid 2821 . . . . . 6 (+g𝐺) = (+g𝐺)
112, 10ressplusg 16612 . . . . 5 (𝐴 ∈ V → (+g𝐺) = (+g𝐻))
129, 11ax-mp 5 . . . 4 (+g𝐺) = (+g𝐻)
13 seqeq2 13374 . . . 4 ((+g𝐺) = (+g𝐻) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
1412, 13ax-mp 5 . . 3 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋}))
155, 6, 7, 14mulgnn 18232 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
16 simpr 487 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → 𝑋𝐴)
171, 16sseldi 3965 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → 𝑋 ∈ (Base‘𝐺))
18 ressmulgnn.3 . . . 4 = (.g𝐺)
19 eqid 2821 . . . 4 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
203, 10, 18, 19mulgnn 18232 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
2117, 20syldan 593 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
2215, 21eqtr4d 2859 1 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  wss 3936  {csn 4567   × cxp 5553  cfv 6355  (class class class)co 7156  1c1 10538  cn 11638  seqcseq 13370  Basecbs 16483  s cress 16484  +gcplusg 16565  invgcminusg 18104  .gcmg 18224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983  df-uz 12245  df-seq 13371  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulg 18225
This theorem is referenced by:  ressmulgnn0  30671
  Copyright terms: Public domain W3C validator