Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ressmulgnn | Structured version Visualization version GIF version |
Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 12-Jun-2017.) |
Ref | Expression |
---|---|
ressmulgnn.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
ressmulgnn.2 | ⊢ 𝐴 ⊆ (Base‘𝐺) |
ressmulgnn.3 | ⊢ ∗ = (.g‘𝐺) |
ressmulgnn.4 | ⊢ 𝐼 = (invg‘𝐺) |
Ref | Expression |
---|---|
ressmulgnn | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressmulgnn.2 | . . . 4 ⊢ 𝐴 ⊆ (Base‘𝐺) | |
2 | ressmulgnn.1 | . . . . 5 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
3 | eqid 2739 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
4 | 2, 3 | ressbas2 16930 | . . . 4 ⊢ (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘𝐻)) |
5 | 1, 4 | ax-mp 5 | . . 3 ⊢ 𝐴 = (Base‘𝐻) |
6 | eqid 2739 | . . 3 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
7 | eqid 2739 | . . 3 ⊢ (.g‘𝐻) = (.g‘𝐻) | |
8 | fvex 6781 | . . . . . 6 ⊢ (Base‘𝐺) ∈ V | |
9 | 8, 1 | ssexi 5249 | . . . . 5 ⊢ 𝐴 ∈ V |
10 | eqid 2739 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
11 | 2, 10 | ressplusg 16981 | . . . . 5 ⊢ (𝐴 ∈ V → (+g‘𝐺) = (+g‘𝐻)) |
12 | 9, 11 | ax-mp 5 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐻) |
13 | seqeq2 13706 | . . . 4 ⊢ ((+g‘𝐺) = (+g‘𝐻) → seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐻), (ℕ × {𝑋}))) | |
14 | 12, 13 | ax-mp 5 | . . 3 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐻), (ℕ × {𝑋})) |
15 | 5, 6, 7, 14 | mulgnn 18689 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴) → (𝑁(.g‘𝐻)𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
16 | simpr 484 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ 𝐴) | |
17 | 1, 16 | sselid 3923 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴) → 𝑋 ∈ (Base‘𝐺)) |
18 | ressmulgnn.3 | . . . 4 ⊢ ∗ = (.g‘𝐺) | |
19 | eqid 2739 | . . . 4 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
20 | 3, 10, 18, 19 | mulgnn 18689 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁 ∗ 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
21 | 17, 20 | syldan 590 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴) → (𝑁 ∗ 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘𝑁)) |
22 | 15, 21 | eqtr4d 2782 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ⊆ wss 3891 {csn 4566 × cxp 5586 ‘cfv 6430 (class class class)co 7268 1c1 10856 ℕcn 11956 seqcseq 13702 Basecbs 16893 ↾s cress 16922 +gcplusg 16943 invgcminusg 18559 .gcmg 18681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-n0 12217 df-z 12303 df-uz 12565 df-seq 13703 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulg 18682 |
This theorem is referenced by: ressmulgnn0 31272 |
Copyright terms: Public domain | W3C validator |