MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressmulgnn Structured version   Visualization version   GIF version

Theorem ressmulgnn 19063
Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 12-Jun-2017.)
Hypotheses
Ref Expression
ressmulgnn.1 𝐻 = (𝐺s 𝐴)
ressmulgnn.2 𝐴 ⊆ (Base‘𝐺)
ressmulgnn.3 = (.g𝐺)
ressmulgnn.4 𝐼 = (invg𝐺)
Assertion
Ref Expression
ressmulgnn ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))

Proof of Theorem ressmulgnn
StepHypRef Expression
1 ressmulgnn.2 . . . 4 𝐴 ⊆ (Base‘𝐺)
2 ressmulgnn.1 . . . . 5 𝐻 = (𝐺s 𝐴)
3 eqid 2734 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
42, 3ressbas2 17261 . . . 4 (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘𝐻))
51, 4ax-mp 5 . . 3 𝐴 = (Base‘𝐻)
6 eqid 2734 . . 3 (+g𝐻) = (+g𝐻)
7 eqid 2734 . . 3 (.g𝐻) = (.g𝐻)
8 fvex 6899 . . . . . 6 (Base‘𝐺) ∈ V
98, 1ssexi 5302 . . . . 5 𝐴 ∈ V
10 eqid 2734 . . . . . 6 (+g𝐺) = (+g𝐺)
112, 10ressplusg 17307 . . . . 5 (𝐴 ∈ V → (+g𝐺) = (+g𝐻))
129, 11ax-mp 5 . . . 4 (+g𝐺) = (+g𝐻)
13 seqeq2 14028 . . . 4 ((+g𝐺) = (+g𝐻) → seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋})))
1412, 13ax-mp 5 . . 3 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐻), (ℕ × {𝑋}))
155, 6, 7, 14mulgnn 19062 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
16 simpr 484 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → 𝑋𝐴)
171, 16sselid 3961 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → 𝑋 ∈ (Base‘𝐺))
18 ressmulgnn.3 . . . 4 = (.g𝐺)
19 eqid 2734 . . . 4 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
203, 10, 18, 19mulgnn 19062 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋 ∈ (Base‘𝐺)) → (𝑁 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
2117, 20syldan 591 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘𝑁))
2215, 21eqtr4d 2772 1 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  wss 3931  {csn 4606   × cxp 5663  cfv 6541  (class class class)co 7413  1c1 11138  cn 12248  seqcseq 14024  Basecbs 17229  s cress 17252  +gcplusg 17273  invgcminusg 18921  .gcmg 19054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-n0 12510  df-z 12597  df-uz 12861  df-seq 14025  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulg 19055
This theorem is referenced by:  ressmulgnn0  19064
  Copyright terms: Public domain W3C validator