Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressmulgnn0 Structured version   Visualization version   GIF version

Theorem ressmulgnn0 30666
Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 14-Jun-2017.)
Hypotheses
Ref Expression
ressmulgnn.1 𝐻 = (𝐺s 𝐴)
ressmulgnn.2 𝐴 ⊆ (Base‘𝐺)
ressmulgnn.3 = (.g𝐺)
ressmulgnn.4 𝐼 = (invg𝐺)
ressmulgnn0.4 (0g𝐺) = (0g𝐻)
Assertion
Ref Expression
ressmulgnn0 ((𝑁 ∈ ℕ0𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))

Proof of Theorem ressmulgnn0
StepHypRef Expression
1 simpr 487 . . 3 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
2 simplr 767 . . 3 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 ∈ ℕ) → 𝑋𝐴)
3 ressmulgnn.1 . . . 4 𝐻 = (𝐺s 𝐴)
4 ressmulgnn.2 . . . 4 𝐴 ⊆ (Base‘𝐺)
5 ressmulgnn.3 . . . 4 = (.g𝐺)
6 ressmulgnn.4 . . . 4 𝐼 = (invg𝐺)
73, 4, 5, 6ressmulgnn 30665 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))
81, 2, 7syl2anc 586 . 2 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 ∈ ℕ) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))
9 simplr 767 . . . . 5 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → 𝑋𝐴)
10 eqid 2821 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
113, 10ressbas2 16549 . . . . . . 7 (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘𝐻))
124, 11ax-mp 5 . . . . . 6 𝐴 = (Base‘𝐻)
13 ressmulgnn0.4 . . . . . 6 (0g𝐺) = (0g𝐻)
14 eqid 2821 . . . . . 6 (.g𝐻) = (.g𝐻)
1512, 13, 14mulg0 18225 . . . . 5 (𝑋𝐴 → (0(.g𝐻)𝑋) = (0g𝐺))
169, 15syl 17 . . . 4 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → (0(.g𝐻)𝑋) = (0g𝐺))
17 simpr 487 . . . . 5 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → 𝑁 = 0)
1817oveq1d 7165 . . . 4 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → (𝑁(.g𝐻)𝑋) = (0(.g𝐻)𝑋))
194, 9sseldi 3964 . . . . 5 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐺))
20 eqid 2821 . . . . . 6 (0g𝐺) = (0g𝐺)
2110, 20, 5mulg0 18225 . . . . 5 (𝑋 ∈ (Base‘𝐺) → (0 𝑋) = (0g𝐺))
2219, 21syl 17 . . . 4 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → (0 𝑋) = (0g𝐺))
2316, 18, 223eqtr4d 2866 . . 3 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → (𝑁(.g𝐻)𝑋) = (0 𝑋))
2417oveq1d 7165 . . 3 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → (𝑁 𝑋) = (0 𝑋))
2523, 24eqtr4d 2859 . 2 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))
26 elnn0 11893 . . . 4 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2726biimpi 218 . . 3 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2827adantr 483 . 2 ((𝑁 ∈ ℕ0𝑋𝐴) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
298, 25, 28mpjaodan 955 1 ((𝑁 ∈ ℕ0𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  wss 3935  cfv 6349  (class class class)co 7150  0cc0 10531  cn 11632  0cn0 11891  Basecbs 16477  s cress 16478  0gc0g 16707  invgcminusg 18098  .gcmg 18218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-seq 13364  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulg 18219
This theorem is referenced by:  xrge0mulgnn0  30671
  Copyright terms: Public domain W3C validator