MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressmulgnn0 Structured version   Visualization version   GIF version

Theorem ressmulgnn0 18982
Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 14-Jun-2017.)
Hypotheses
Ref Expression
ressmulgnn.1 𝐻 = (𝐺s 𝐴)
ressmulgnn.2 𝐴 ⊆ (Base‘𝐺)
ressmulgnn.3 = (.g𝐺)
ressmulgnn.4 𝐼 = (invg𝐺)
ressmulgnn0.4 (0g𝐺) = (0g𝐻)
Assertion
Ref Expression
ressmulgnn0 ((𝑁 ∈ ℕ0𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))

Proof of Theorem ressmulgnn0
StepHypRef Expression
1 simpr 484 . . 3 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
2 simplr 768 . . 3 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 ∈ ℕ) → 𝑋𝐴)
3 ressmulgnn.1 . . . 4 𝐻 = (𝐺s 𝐴)
4 ressmulgnn.2 . . . 4 𝐴 ⊆ (Base‘𝐺)
5 ressmulgnn.3 . . . 4 = (.g𝐺)
6 ressmulgnn.4 . . . 4 𝐼 = (invg𝐺)
73, 4, 5, 6ressmulgnn 18981 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))
81, 2, 7syl2anc 584 . 2 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 ∈ ℕ) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))
9 simplr 768 . . . . 5 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → 𝑋𝐴)
10 eqid 2730 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
113, 10ressbas2 17141 . . . . . . 7 (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘𝐻))
124, 11ax-mp 5 . . . . . 6 𝐴 = (Base‘𝐻)
13 ressmulgnn0.4 . . . . . 6 (0g𝐺) = (0g𝐻)
14 eqid 2730 . . . . . 6 (.g𝐻) = (.g𝐻)
1512, 13, 14mulg0 18979 . . . . 5 (𝑋𝐴 → (0(.g𝐻)𝑋) = (0g𝐺))
169, 15syl 17 . . . 4 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → (0(.g𝐻)𝑋) = (0g𝐺))
17 simpr 484 . . . . 5 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → 𝑁 = 0)
1817oveq1d 7356 . . . 4 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → (𝑁(.g𝐻)𝑋) = (0(.g𝐻)𝑋))
194, 9sselid 3930 . . . . 5 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐺))
20 eqid 2730 . . . . . 6 (0g𝐺) = (0g𝐺)
2110, 20, 5mulg0 18979 . . . . 5 (𝑋 ∈ (Base‘𝐺) → (0 𝑋) = (0g𝐺))
2219, 21syl 17 . . . 4 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → (0 𝑋) = (0g𝐺))
2316, 18, 223eqtr4d 2775 . . 3 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → (𝑁(.g𝐻)𝑋) = (0 𝑋))
2417oveq1d 7356 . . 3 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → (𝑁 𝑋) = (0 𝑋))
2523, 24eqtr4d 2768 . 2 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))
26 elnn0 12375 . . . 4 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2726biimpi 216 . . 3 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2827adantr 480 . 2 ((𝑁 ∈ ℕ0𝑋𝐴) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
298, 25, 28mpjaodan 960 1 ((𝑁 ∈ ℕ0𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2110  wss 3900  cfv 6477  (class class class)co 7341  0cc0 10998  cn 12117  0cn0 12373  Basecbs 17112  s cress 17133  0gc0g 17335  invgcminusg 18839  .gcmg 18972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-n0 12374  df-z 12461  df-uz 12725  df-seq 13901  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulg 18973
This theorem is referenced by:  fermltlchr  21459  xrge0mulgnn0  32986  znfermltl  33321
  Copyright terms: Public domain W3C validator