![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressmulgnn0 | Structured version Visualization version GIF version |
Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
Ref | Expression |
---|---|
ressmulgnn.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
ressmulgnn.2 | ⊢ 𝐴 ⊆ (Base‘𝐺) |
ressmulgnn.3 | ⊢ ∗ = (.g‘𝐺) |
ressmulgnn.4 | ⊢ 𝐼 = (invg‘𝐺) |
ressmulgnn0.4 | ⊢ (0g‘𝐺) = (0g‘𝐻) |
Ref | Expression |
---|---|
ressmulgnn0 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 483 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
2 | simplr 767 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ 𝐴) | |
3 | ressmulgnn.1 | . . . 4 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
4 | ressmulgnn.2 | . . . 4 ⊢ 𝐴 ⊆ (Base‘𝐺) | |
5 | ressmulgnn.3 | . . . 4 ⊢ ∗ = (.g‘𝐺) | |
6 | ressmulgnn.4 | . . . 4 ⊢ 𝐼 = (invg‘𝐺) | |
7 | 3, 4, 5, 6 | ressmulgnn 19034 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
8 | 1, 2, 7 | syl2anc 582 | . 2 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 ∈ ℕ) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
9 | simplr 767 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → 𝑋 ∈ 𝐴) | |
10 | eqid 2725 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
11 | 3, 10 | ressbas2 17215 | . . . . . . 7 ⊢ (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘𝐻)) |
12 | 4, 11 | ax-mp 5 | . . . . . 6 ⊢ 𝐴 = (Base‘𝐻) |
13 | ressmulgnn0.4 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐻) | |
14 | eqid 2725 | . . . . . 6 ⊢ (.g‘𝐻) = (.g‘𝐻) | |
15 | 12, 13, 14 | mulg0 19032 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (0(.g‘𝐻)𝑋) = (0g‘𝐺)) |
16 | 9, 15 | syl 17 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (0(.g‘𝐻)𝑋) = (0g‘𝐺)) |
17 | simpr 483 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → 𝑁 = 0) | |
18 | 17 | oveq1d 7430 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (0(.g‘𝐻)𝑋)) |
19 | 4, 9 | sselid 3970 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐺)) |
20 | eqid 2725 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
21 | 10, 20, 5 | mulg0 19032 | . . . . 5 ⊢ (𝑋 ∈ (Base‘𝐺) → (0 ∗ 𝑋) = (0g‘𝐺)) |
22 | 19, 21 | syl 17 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (0 ∗ 𝑋) = (0g‘𝐺)) |
23 | 16, 18, 22 | 3eqtr4d 2775 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (0 ∗ 𝑋)) |
24 | 17 | oveq1d 7430 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (𝑁 ∗ 𝑋) = (0 ∗ 𝑋)) |
25 | 23, 24 | eqtr4d 2768 | . 2 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
26 | elnn0 12502 | . . . 4 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
27 | 26 | biimpi 215 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
28 | 27 | adantr 479 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
29 | 8, 25, 28 | mpjaodan 956 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ⊆ wss 3940 ‘cfv 6542 (class class class)co 7415 0cc0 11136 ℕcn 12240 ℕ0cn0 12500 Basecbs 17177 ↾s cress 17206 0gc0g 17418 invgcminusg 18893 .gcmg 19025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-n0 12501 df-z 12587 df-uz 12851 df-seq 13997 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulg 19026 |
This theorem is referenced by: fermltlchr 21461 xrge0mulgnn0 32788 znfermltl 33124 |
Copyright terms: Public domain | W3C validator |