| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressmulgnn0 | Structured version Visualization version GIF version | ||
| Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
| Ref | Expression |
|---|---|
| ressmulgnn.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
| ressmulgnn.2 | ⊢ 𝐴 ⊆ (Base‘𝐺) |
| ressmulgnn.3 | ⊢ ∗ = (.g‘𝐺) |
| ressmulgnn.4 | ⊢ 𝐼 = (invg‘𝐺) |
| ressmulgnn0.4 | ⊢ (0g‘𝐺) = (0g‘𝐻) |
| Ref | Expression |
|---|---|
| ressmulgnn0 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
| 2 | simplr 768 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ 𝐴) | |
| 3 | ressmulgnn.1 | . . . 4 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
| 4 | ressmulgnn.2 | . . . 4 ⊢ 𝐴 ⊆ (Base‘𝐺) | |
| 5 | ressmulgnn.3 | . . . 4 ⊢ ∗ = (.g‘𝐺) | |
| 6 | ressmulgnn.4 | . . . 4 ⊢ 𝐼 = (invg‘𝐺) | |
| 7 | 3, 4, 5, 6 | ressmulgnn 18981 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
| 8 | 1, 2, 7 | syl2anc 584 | . 2 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 ∈ ℕ) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
| 9 | simplr 768 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → 𝑋 ∈ 𝐴) | |
| 10 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 11 | 3, 10 | ressbas2 17141 | . . . . . . 7 ⊢ (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘𝐻)) |
| 12 | 4, 11 | ax-mp 5 | . . . . . 6 ⊢ 𝐴 = (Base‘𝐻) |
| 13 | ressmulgnn0.4 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐻) | |
| 14 | eqid 2730 | . . . . . 6 ⊢ (.g‘𝐻) = (.g‘𝐻) | |
| 15 | 12, 13, 14 | mulg0 18979 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (0(.g‘𝐻)𝑋) = (0g‘𝐺)) |
| 16 | 9, 15 | syl 17 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (0(.g‘𝐻)𝑋) = (0g‘𝐺)) |
| 17 | simpr 484 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → 𝑁 = 0) | |
| 18 | 17 | oveq1d 7356 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (0(.g‘𝐻)𝑋)) |
| 19 | 4, 9 | sselid 3930 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐺)) |
| 20 | eqid 2730 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 21 | 10, 20, 5 | mulg0 18979 | . . . . 5 ⊢ (𝑋 ∈ (Base‘𝐺) → (0 ∗ 𝑋) = (0g‘𝐺)) |
| 22 | 19, 21 | syl 17 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (0 ∗ 𝑋) = (0g‘𝐺)) |
| 23 | 16, 18, 22 | 3eqtr4d 2775 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (0 ∗ 𝑋)) |
| 24 | 17 | oveq1d 7356 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (𝑁 ∗ 𝑋) = (0 ∗ 𝑋)) |
| 25 | 23, 24 | eqtr4d 2768 | . 2 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
| 26 | elnn0 12375 | . . . 4 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 27 | 26 | biimpi 216 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
| 28 | 27 | adantr 480 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
| 29 | 8, 25, 28 | mpjaodan 960 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2110 ⊆ wss 3900 ‘cfv 6477 (class class class)co 7341 0cc0 10998 ℕcn 12117 ℕ0cn0 12373 Basecbs 17112 ↾s cress 17133 0gc0g 17335 invgcminusg 18839 .gcmg 18972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-n0 12374 df-z 12461 df-uz 12725 df-seq 13901 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulg 18973 |
| This theorem is referenced by: fermltlchr 21459 xrge0mulgnn0 32986 znfermltl 33321 |
| Copyright terms: Public domain | W3C validator |