| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressmulgnn0 | Structured version Visualization version GIF version | ||
| Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
| Ref | Expression |
|---|---|
| ressmulgnn.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
| ressmulgnn.2 | ⊢ 𝐴 ⊆ (Base‘𝐺) |
| ressmulgnn.3 | ⊢ ∗ = (.g‘𝐺) |
| ressmulgnn.4 | ⊢ 𝐼 = (invg‘𝐺) |
| ressmulgnn0.4 | ⊢ (0g‘𝐺) = (0g‘𝐻) |
| Ref | Expression |
|---|---|
| ressmulgnn0 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
| 2 | simplr 768 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ 𝐴) | |
| 3 | ressmulgnn.1 | . . . 4 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
| 4 | ressmulgnn.2 | . . . 4 ⊢ 𝐴 ⊆ (Base‘𝐺) | |
| 5 | ressmulgnn.3 | . . . 4 ⊢ ∗ = (.g‘𝐺) | |
| 6 | ressmulgnn.4 | . . . 4 ⊢ 𝐼 = (invg‘𝐺) | |
| 7 | 3, 4, 5, 6 | ressmulgnn 18990 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
| 8 | 1, 2, 7 | syl2anc 584 | . 2 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 ∈ ℕ) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
| 9 | simplr 768 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → 𝑋 ∈ 𝐴) | |
| 10 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 11 | 3, 10 | ressbas2 17184 | . . . . . . 7 ⊢ (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘𝐻)) |
| 12 | 4, 11 | ax-mp 5 | . . . . . 6 ⊢ 𝐴 = (Base‘𝐻) |
| 13 | ressmulgnn0.4 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐻) | |
| 14 | eqid 2729 | . . . . . 6 ⊢ (.g‘𝐻) = (.g‘𝐻) | |
| 15 | 12, 13, 14 | mulg0 18988 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (0(.g‘𝐻)𝑋) = (0g‘𝐺)) |
| 16 | 9, 15 | syl 17 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (0(.g‘𝐻)𝑋) = (0g‘𝐺)) |
| 17 | simpr 484 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → 𝑁 = 0) | |
| 18 | 17 | oveq1d 7384 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (0(.g‘𝐻)𝑋)) |
| 19 | 4, 9 | sselid 3941 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐺)) |
| 20 | eqid 2729 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 21 | 10, 20, 5 | mulg0 18988 | . . . . 5 ⊢ (𝑋 ∈ (Base‘𝐺) → (0 ∗ 𝑋) = (0g‘𝐺)) |
| 22 | 19, 21 | syl 17 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (0 ∗ 𝑋) = (0g‘𝐺)) |
| 23 | 16, 18, 22 | 3eqtr4d 2774 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (0 ∗ 𝑋)) |
| 24 | 17 | oveq1d 7384 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (𝑁 ∗ 𝑋) = (0 ∗ 𝑋)) |
| 25 | 23, 24 | eqtr4d 2767 | . 2 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
| 26 | elnn0 12420 | . . . 4 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
| 27 | 26 | biimpi 216 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
| 28 | 27 | adantr 480 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
| 29 | 8, 25, 28 | mpjaodan 960 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ‘cfv 6499 (class class class)co 7369 0cc0 11044 ℕcn 12162 ℕ0cn0 12418 Basecbs 17155 ↾s cress 17176 0gc0g 17378 invgcminusg 18848 .gcmg 18981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-seq 13943 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulg 18982 |
| This theorem is referenced by: fermltlchr 21471 xrge0mulgnn0 32999 znfermltl 33330 |
| Copyright terms: Public domain | W3C validator |