![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressmulgnn0 | Structured version Visualization version GIF version |
Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
Ref | Expression |
---|---|
ressmulgnn.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
ressmulgnn.2 | ⊢ 𝐴 ⊆ (Base‘𝐺) |
ressmulgnn.3 | ⊢ ∗ = (.g‘𝐺) |
ressmulgnn.4 | ⊢ 𝐼 = (invg‘𝐺) |
ressmulgnn0.4 | ⊢ (0g‘𝐺) = (0g‘𝐻) |
Ref | Expression |
---|---|
ressmulgnn0 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
2 | simplr 768 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ 𝐴) | |
3 | ressmulgnn.1 | . . . 4 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
4 | ressmulgnn.2 | . . . 4 ⊢ 𝐴 ⊆ (Base‘𝐺) | |
5 | ressmulgnn.3 | . . . 4 ⊢ ∗ = (.g‘𝐺) | |
6 | ressmulgnn.4 | . . . 4 ⊢ 𝐼 = (invg‘𝐺) | |
7 | 3, 4, 5, 6 | ressmulgnn 19016 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
8 | 1, 2, 7 | syl2anc 583 | . 2 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 ∈ ℕ) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
9 | simplr 768 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → 𝑋 ∈ 𝐴) | |
10 | eqid 2727 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
11 | 3, 10 | ressbas2 17203 | . . . . . . 7 ⊢ (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘𝐻)) |
12 | 4, 11 | ax-mp 5 | . . . . . 6 ⊢ 𝐴 = (Base‘𝐻) |
13 | ressmulgnn0.4 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐻) | |
14 | eqid 2727 | . . . . . 6 ⊢ (.g‘𝐻) = (.g‘𝐻) | |
15 | 12, 13, 14 | mulg0 19014 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (0(.g‘𝐻)𝑋) = (0g‘𝐺)) |
16 | 9, 15 | syl 17 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (0(.g‘𝐻)𝑋) = (0g‘𝐺)) |
17 | simpr 484 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → 𝑁 = 0) | |
18 | 17 | oveq1d 7429 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (0(.g‘𝐻)𝑋)) |
19 | 4, 9 | sselid 3976 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐺)) |
20 | eqid 2727 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
21 | 10, 20, 5 | mulg0 19014 | . . . . 5 ⊢ (𝑋 ∈ (Base‘𝐺) → (0 ∗ 𝑋) = (0g‘𝐺)) |
22 | 19, 21 | syl 17 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (0 ∗ 𝑋) = (0g‘𝐺)) |
23 | 16, 18, 22 | 3eqtr4d 2777 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (0 ∗ 𝑋)) |
24 | 17 | oveq1d 7429 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (𝑁 ∗ 𝑋) = (0 ∗ 𝑋)) |
25 | 23, 24 | eqtr4d 2770 | . 2 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
26 | elnn0 12490 | . . . 4 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
27 | 26 | biimpi 215 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
28 | 27 | adantr 480 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
29 | 8, 25, 28 | mpjaodan 957 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ⊆ wss 3944 ‘cfv 6542 (class class class)co 7414 0cc0 11124 ℕcn 12228 ℕ0cn0 12488 Basecbs 17165 ↾s cress 17194 0gc0g 17406 invgcminusg 18876 .gcmg 19007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-n0 12489 df-z 12575 df-uz 12839 df-seq 13985 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-ress 17195 df-plusg 17231 df-mulg 19008 |
This theorem is referenced by: fermltlchr 21439 xrge0mulgnn0 32714 znfermltl 33005 |
Copyright terms: Public domain | W3C validator |