Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ressmulgnn0 | Structured version Visualization version GIF version |
Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
Ref | Expression |
---|---|
ressmulgnn.1 | ⊢ 𝐻 = (𝐺 ↾s 𝐴) |
ressmulgnn.2 | ⊢ 𝐴 ⊆ (Base‘𝐺) |
ressmulgnn.3 | ⊢ ∗ = (.g‘𝐺) |
ressmulgnn.4 | ⊢ 𝐼 = (invg‘𝐺) |
ressmulgnn0.4 | ⊢ (0g‘𝐺) = (0g‘𝐻) |
Ref | Expression |
---|---|
ressmulgnn0 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
2 | simplr 766 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 ∈ ℕ) → 𝑋 ∈ 𝐴) | |
3 | ressmulgnn.1 | . . . 4 ⊢ 𝐻 = (𝐺 ↾s 𝐴) | |
4 | ressmulgnn.2 | . . . 4 ⊢ 𝐴 ⊆ (Base‘𝐺) | |
5 | ressmulgnn.3 | . . . 4 ⊢ ∗ = (.g‘𝐺) | |
6 | ressmulgnn.4 | . . . 4 ⊢ 𝐼 = (invg‘𝐺) | |
7 | 3, 4, 5, 6 | ressmulgnn 31579 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐴) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
8 | 1, 2, 7 | syl2anc 584 | . 2 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 ∈ ℕ) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
9 | simplr 766 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → 𝑋 ∈ 𝐴) | |
10 | eqid 2736 | . . . . . . . 8 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
11 | 3, 10 | ressbas2 17046 | . . . . . . 7 ⊢ (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘𝐻)) |
12 | 4, 11 | ax-mp 5 | . . . . . 6 ⊢ 𝐴 = (Base‘𝐻) |
13 | ressmulgnn0.4 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐻) | |
14 | eqid 2736 | . . . . . 6 ⊢ (.g‘𝐻) = (.g‘𝐻) | |
15 | 12, 13, 14 | mulg0 18803 | . . . . 5 ⊢ (𝑋 ∈ 𝐴 → (0(.g‘𝐻)𝑋) = (0g‘𝐺)) |
16 | 9, 15 | syl 17 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (0(.g‘𝐻)𝑋) = (0g‘𝐺)) |
17 | simpr 485 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → 𝑁 = 0) | |
18 | 17 | oveq1d 7352 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (0(.g‘𝐻)𝑋)) |
19 | 4, 9 | sselid 3930 | . . . . 5 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐺)) |
20 | eqid 2736 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
21 | 10, 20, 5 | mulg0 18803 | . . . . 5 ⊢ (𝑋 ∈ (Base‘𝐺) → (0 ∗ 𝑋) = (0g‘𝐺)) |
22 | 19, 21 | syl 17 | . . . 4 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (0 ∗ 𝑋) = (0g‘𝐺)) |
23 | 16, 18, 22 | 3eqtr4d 2786 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (0 ∗ 𝑋)) |
24 | 17 | oveq1d 7352 | . . 3 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (𝑁 ∗ 𝑋) = (0 ∗ 𝑋)) |
25 | 23, 24 | eqtr4d 2779 | . 2 ⊢ (((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) ∧ 𝑁 = 0) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
26 | elnn0 12336 | . . . 4 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
27 | 26 | biimpi 215 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
28 | 27 | adantr 481 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) → (𝑁 ∈ ℕ ∨ 𝑁 = 0)) |
29 | 8, 25, 28 | mpjaodan 956 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐴) → (𝑁(.g‘𝐻)𝑋) = (𝑁 ∗ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ⊆ wss 3898 ‘cfv 6479 (class class class)co 7337 0cc0 10972 ℕcn 12074 ℕ0cn0 12334 Basecbs 17009 ↾s cress 17038 0gc0g 17247 invgcminusg 18674 .gcmg 18796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-n0 12335 df-z 12421 df-uz 12684 df-seq 13823 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulg 18797 |
This theorem is referenced by: xrge0mulgnn0 31585 fermltlchr 31858 znfermltl 31859 |
Copyright terms: Public domain | W3C validator |