MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressmulgnn0 Structured version   Visualization version   GIF version

Theorem ressmulgnn0 19017
Description: Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 14-Jun-2017.)
Hypotheses
Ref Expression
ressmulgnn.1 𝐻 = (𝐺s 𝐴)
ressmulgnn.2 𝐴 ⊆ (Base‘𝐺)
ressmulgnn.3 = (.g𝐺)
ressmulgnn.4 𝐼 = (invg𝐺)
ressmulgnn0.4 (0g𝐺) = (0g𝐻)
Assertion
Ref Expression
ressmulgnn0 ((𝑁 ∈ ℕ0𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))

Proof of Theorem ressmulgnn0
StepHypRef Expression
1 simpr 484 . . 3 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
2 simplr 768 . . 3 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 ∈ ℕ) → 𝑋𝐴)
3 ressmulgnn.1 . . . 4 𝐻 = (𝐺s 𝐴)
4 ressmulgnn.2 . . . 4 𝐴 ⊆ (Base‘𝐺)
5 ressmulgnn.3 . . . 4 = (.g𝐺)
6 ressmulgnn.4 . . . 4 𝐼 = (invg𝐺)
73, 4, 5, 6ressmulgnn 19016 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))
81, 2, 7syl2anc 583 . 2 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 ∈ ℕ) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))
9 simplr 768 . . . . 5 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → 𝑋𝐴)
10 eqid 2727 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
113, 10ressbas2 17203 . . . . . . 7 (𝐴 ⊆ (Base‘𝐺) → 𝐴 = (Base‘𝐻))
124, 11ax-mp 5 . . . . . 6 𝐴 = (Base‘𝐻)
13 ressmulgnn0.4 . . . . . 6 (0g𝐺) = (0g𝐻)
14 eqid 2727 . . . . . 6 (.g𝐻) = (.g𝐻)
1512, 13, 14mulg0 19014 . . . . 5 (𝑋𝐴 → (0(.g𝐻)𝑋) = (0g𝐺))
169, 15syl 17 . . . 4 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → (0(.g𝐻)𝑋) = (0g𝐺))
17 simpr 484 . . . . 5 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → 𝑁 = 0)
1817oveq1d 7429 . . . 4 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → (𝑁(.g𝐻)𝑋) = (0(.g𝐻)𝑋))
194, 9sselid 3976 . . . . 5 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → 𝑋 ∈ (Base‘𝐺))
20 eqid 2727 . . . . . 6 (0g𝐺) = (0g𝐺)
2110, 20, 5mulg0 19014 . . . . 5 (𝑋 ∈ (Base‘𝐺) → (0 𝑋) = (0g𝐺))
2219, 21syl 17 . . . 4 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → (0 𝑋) = (0g𝐺))
2316, 18, 223eqtr4d 2777 . . 3 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → (𝑁(.g𝐻)𝑋) = (0 𝑋))
2417oveq1d 7429 . . 3 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → (𝑁 𝑋) = (0 𝑋))
2523, 24eqtr4d 2770 . 2 (((𝑁 ∈ ℕ0𝑋𝐴) ∧ 𝑁 = 0) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))
26 elnn0 12490 . . . 4 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2726biimpi 215 . . 3 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2827adantr 480 . 2 ((𝑁 ∈ ℕ0𝑋𝐴) → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
298, 25, 28mpjaodan 957 1 ((𝑁 ∈ ℕ0𝑋𝐴) → (𝑁(.g𝐻)𝑋) = (𝑁 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1534  wcel 2099  wss 3944  cfv 6542  (class class class)co 7414  0cc0 11124  cn 12228  0cn0 12488  Basecbs 17165  s cress 17194  0gc0g 17406  invgcminusg 18876  .gcmg 19007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8716  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-2 12291  df-n0 12489  df-z 12575  df-uz 12839  df-seq 13985  df-sets 17118  df-slot 17136  df-ndx 17148  df-base 17166  df-ress 17195  df-plusg 17231  df-mulg 19008
This theorem is referenced by:  fermltlchr  21439  xrge0mulgnn0  32714  znfermltl  33005
  Copyright terms: Public domain W3C validator