MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvgcmpub Structured version   Visualization version   GIF version

Theorem cvgcmpub 15709
Description: An upper bound for the limit of a real infinite series. This theorem can also be used to compare two infinite series. (Contributed by Mario Carneiro, 24-Mar-2014.)
Hypotheses
Ref Expression
cvgcmp.1 𝑍 = (β„€β‰₯β€˜π‘€)
cvgcmp.2 (πœ‘ β†’ 𝑁 ∈ 𝑍)
cvgcmp.3 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ ℝ)
cvgcmp.4 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) ∈ ℝ)
cvgcmpub.5 (πœ‘ β†’ seq𝑀( + , 𝐹) ⇝ 𝐴)
cvgcmpub.6 (πœ‘ β†’ seq𝑀( + , 𝐺) ⇝ 𝐡)
cvgcmpub.7 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) ≀ (πΉβ€˜π‘˜))
Assertion
Ref Expression
cvgcmpub (πœ‘ β†’ 𝐡 ≀ 𝐴)
Distinct variable groups:   π‘˜,𝐹   π‘˜,𝐺   πœ‘,π‘˜   π‘˜,𝑀   π‘˜,𝑁   π‘˜,𝑍
Allowed substitution hints:   𝐴(π‘˜)   𝐡(π‘˜)

Proof of Theorem cvgcmpub
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 cvgcmp.1 . 2 𝑍 = (β„€β‰₯β€˜π‘€)
2 cvgcmp.2 . . . 4 (πœ‘ β†’ 𝑁 ∈ 𝑍)
32, 1eleqtrdi 2848 . . 3 (πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))
4 eluzel2 12775 . . 3 (𝑁 ∈ (β„€β‰₯β€˜π‘€) β†’ 𝑀 ∈ β„€)
53, 4syl 17 . 2 (πœ‘ β†’ 𝑀 ∈ β„€)
6 cvgcmpub.6 . 2 (πœ‘ β†’ seq𝑀( + , 𝐺) ⇝ 𝐡)
7 cvgcmpub.5 . 2 (πœ‘ β†’ seq𝑀( + , 𝐹) ⇝ 𝐴)
8 cvgcmp.4 . . . 4 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) ∈ ℝ)
91, 5, 8serfre 13944 . . 3 (πœ‘ β†’ seq𝑀( + , 𝐺):π‘βŸΆβ„)
109ffvelcdmda 7040 . 2 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (seq𝑀( + , 𝐺)β€˜π‘›) ∈ ℝ)
11 cvgcmp.3 . . . 4 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ ℝ)
121, 5, 11serfre 13944 . . 3 (πœ‘ β†’ seq𝑀( + , 𝐹):π‘βŸΆβ„)
1312ffvelcdmda 7040 . 2 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (seq𝑀( + , 𝐹)β€˜π‘›) ∈ ℝ)
14 simpr 486 . . . 4 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ 𝑛 ∈ 𝑍)
1514, 1eleqtrdi 2848 . . 3 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ 𝑛 ∈ (β„€β‰₯β€˜π‘€))
16 simpl 484 . . . 4 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ πœ‘)
17 elfzuz 13444 . . . . 5 (π‘˜ ∈ (𝑀...𝑛) β†’ π‘˜ ∈ (β„€β‰₯β€˜π‘€))
1817, 1eleqtrrdi 2849 . . . 4 (π‘˜ ∈ (𝑀...𝑛) β†’ π‘˜ ∈ 𝑍)
1916, 18, 8syl2an 597 . . 3 (((πœ‘ ∧ 𝑛 ∈ 𝑍) ∧ π‘˜ ∈ (𝑀...𝑛)) β†’ (πΊβ€˜π‘˜) ∈ ℝ)
2016, 18, 11syl2an 597 . . 3 (((πœ‘ ∧ 𝑛 ∈ 𝑍) ∧ π‘˜ ∈ (𝑀...𝑛)) β†’ (πΉβ€˜π‘˜) ∈ ℝ)
21 cvgcmpub.7 . . . 4 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΊβ€˜π‘˜) ≀ (πΉβ€˜π‘˜))
2216, 18, 21syl2an 597 . . 3 (((πœ‘ ∧ 𝑛 ∈ 𝑍) ∧ π‘˜ ∈ (𝑀...𝑛)) β†’ (πΊβ€˜π‘˜) ≀ (πΉβ€˜π‘˜))
2315, 19, 20, 22serle 13970 . 2 ((πœ‘ ∧ 𝑛 ∈ 𝑍) β†’ (seq𝑀( + , 𝐺)β€˜π‘›) ≀ (seq𝑀( + , 𝐹)β€˜π‘›))
241, 5, 6, 7, 10, 13, 23climle 15529 1 (πœ‘ β†’ 𝐡 ≀ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   class class class wbr 5110  β€˜cfv 6501  (class class class)co 7362  β„cr 11057   + caddc 11061   ≀ cle 11197  β„€cz 12506  β„€β‰₯cuz 12770  ...cfz 13431  seqcseq 13913   ⇝ cli 15373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-sup 9385  df-inf 9386  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-rp 12923  df-fz 13432  df-fzo 13575  df-fl 13704  df-seq 13914  df-exp 13975  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-clim 15377  df-rlim 15378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator