MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserle Structured version   Visualization version   GIF version

Theorem iserle 15693
Description: Comparison of the limits of two infinite series. (Contributed by Paul Chapman, 12-Nov-2007.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
iserle.2 (𝜑𝑀 ∈ ℤ)
iserle.4 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
iserle.5 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
iserle.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
iserle.7 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
iserle.8 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐺𝑘))
Assertion
Ref Expression
iserle (𝜑𝐴𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝐺   𝜑,𝑘   𝑘,𝑍

Proof of Theorem iserle
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 clim2ser.1 . 2 𝑍 = (ℤ𝑀)
2 iserle.2 . 2 (𝜑𝑀 ∈ ℤ)
3 iserle.4 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
4 iserle.5 . 2 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
5 iserle.6 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
61, 2, 5serfre 14069 . . 3 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
76ffvelcdmda 7104 . 2 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ)
8 iserle.7 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
91, 2, 8serfre 14069 . . 3 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ)
109ffvelcdmda 7104 . 2 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐺)‘𝑗) ∈ ℝ)
11 simpr 484 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝑍)
1211, 1eleqtrdi 2849 . . 3 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
13 simpll 767 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝜑)
14 elfzuz 13557 . . . . . 6 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
1514, 1eleqtrrdi 2850 . . . . 5 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
1615adantl 481 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝑘𝑍)
1713, 16, 5syl2anc 584 . . 3 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℝ)
1813, 16, 8syl2anc 584 . . 3 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) ∈ ℝ)
19 iserle.8 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐺𝑘))
2013, 16, 19syl2anc 584 . . 3 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ≤ (𝐺𝑘))
2112, 17, 18, 20serle 14095 . 2 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ≤ (seq𝑀( + , 𝐺)‘𝑗))
221, 2, 3, 4, 7, 10, 21climle 15673 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152   + caddc 11156  cle 11294  cz 12611  cuz 12876  ...cfz 13544  seqcseq 14039  cli 15517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522
This theorem is referenced by:  iserge0  15694  isumle  15877  ege2le3  16123
  Copyright terms: Public domain W3C validator