MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iserle Structured version   Visualization version   GIF version

Theorem iserle 15004
Description: Comparison of the limits of two infinite series. (Contributed by Paul Chapman, 12-Nov-2007.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
clim2ser.1 𝑍 = (ℤ𝑀)
iserle.2 (𝜑𝑀 ∈ ℤ)
iserle.4 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
iserle.5 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
iserle.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
iserle.7 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
iserle.8 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐺𝑘))
Assertion
Ref Expression
iserle (𝜑𝐴𝐵)
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝑘,𝑀   𝑘,𝐺   𝜑,𝑘   𝑘,𝑍

Proof of Theorem iserle
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 clim2ser.1 . 2 𝑍 = (ℤ𝑀)
2 iserle.2 . 2 (𝜑𝑀 ∈ ℤ)
3 iserle.4 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
4 iserle.5 . 2 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
5 iserle.6 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
61, 2, 5serfre 13387 . . 3 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
76ffvelrnda 6843 . 2 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ∈ ℝ)
8 iserle.7 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
91, 2, 8serfre 13387 . . 3 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ)
109ffvelrnda 6843 . 2 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐺)‘𝑗) ∈ ℝ)
11 simpr 485 . . . 4 ((𝜑𝑗𝑍) → 𝑗𝑍)
1211, 1eleqtrdi 2920 . . 3 ((𝜑𝑗𝑍) → 𝑗 ∈ (ℤ𝑀))
13 simpll 763 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝜑)
14 elfzuz 12892 . . . . . 6 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
1514, 1eleqtrrdi 2921 . . . . 5 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
1615adantl 482 . . . 4 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝑘𝑍)
1713, 16, 5syl2anc 584 . . 3 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ∈ ℝ)
1813, 16, 8syl2anc 584 . . 3 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) ∈ ℝ)
19 iserle.8 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐺𝑘))
2013, 16, 19syl2anc 584 . . 3 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐹𝑘) ≤ (𝐺𝑘))
2112, 17, 18, 20serle 13413 . 2 ((𝜑𝑗𝑍) → (seq𝑀( + , 𝐹)‘𝑗) ≤ (seq𝑀( + , 𝐺)‘𝑗))
221, 2, 3, 4, 7, 10, 21climle 14984 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105   class class class wbr 5057  cfv 6348  (class class class)co 7145  cr 10524   + caddc 10528  cle 10664  cz 11969  cuz 12231  ...cfz 12880  seqcseq 13357  cli 14829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12881  df-fzo 13022  df-fl 13150  df-seq 13358  df-exp 13418  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-clim 14833  df-rlim 14834
This theorem is referenced by:  iserge0  15005  isumle  15187  ege2le3  15431
  Copyright terms: Public domain W3C validator