Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlhilnvl | Structured version Visualization version GIF version |
Description: The involution operation of the star division ring for the final constructed Hilbert space. (Contributed by NM, 20-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
Ref | Expression |
---|---|
hlhilnvl.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hlhilnvl.u | ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) |
hlhilnvl.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hlhilnvl.i | ⊢ ∗ = ((HGMap‘𝐾)‘𝑊) |
hlhilnvl.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
Ref | Expression |
---|---|
hlhilnvl | ⊢ (𝜑 → ∗ = (*𝑟‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6671 | . . 3 ⊢ ((EDRing‘𝐾)‘𝑊) ∈ V | |
2 | hlhilnvl.i | . . . 4 ⊢ ∗ = ((HGMap‘𝐾)‘𝑊) | |
3 | 2 | fvexi 6672 | . . 3 ⊢ ∗ ∈ V |
4 | starvid 16682 | . . . 4 ⊢ *𝑟 = Slot (*𝑟‘ndx) | |
5 | 4 | setsid 16596 | . . 3 ⊢ ((((EDRing‘𝐾)‘𝑊) ∈ V ∧ ∗ ∈ V) → ∗ = (*𝑟‘(((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ∗ 〉))) |
6 | 1, 3, 5 | mp2an 691 | . 2 ⊢ ∗ = (*𝑟‘(((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ∗ 〉)) |
7 | hlhilnvl.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
8 | hlhilnvl.u | . . . . 5 ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) | |
9 | hlhilnvl.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
10 | eqid 2758 | . . . . 5 ⊢ ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊) | |
11 | eqid 2758 | . . . . 5 ⊢ (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ∗ 〉) = (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ∗ 〉) | |
12 | 7, 8, 9, 10, 2, 11 | hlhilsca 39511 | . . . 4 ⊢ (𝜑 → (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ∗ 〉) = (Scalar‘𝑈)) |
13 | hlhilnvl.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑈) | |
14 | 12, 13 | eqtr4di 2811 | . . 3 ⊢ (𝜑 → (((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ∗ 〉) = 𝑅) |
15 | 14 | fveq2d 6662 | . 2 ⊢ (𝜑 → (*𝑟‘(((EDRing‘𝐾)‘𝑊) sSet 〈(*𝑟‘ndx), ∗ 〉)) = (*𝑟‘𝑅)) |
16 | 6, 15 | syl5eq 2805 | 1 ⊢ (𝜑 → ∗ = (*𝑟‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 〈cop 4528 ‘cfv 6335 (class class class)co 7150 ndxcnx 16538 sSet csts 16539 *𝑟cstv 16625 Scalarcsca 16626 HLchlt 36926 LHypclh 37560 EDRingcedring 38329 HGMapchg 39459 HLHilchlh 39508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-n0 11935 df-z 12021 df-uz 12283 df-fz 12940 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-plusg 16636 df-starv 16638 df-sca 16639 df-vsca 16640 df-ip 16641 df-hlhil 39509 |
This theorem is referenced by: hlhilsrnglem 39529 hlhilphllem 39535 |
Copyright terms: Public domain | W3C validator |