Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlhilnvl Structured version   Visualization version   GIF version

Theorem hlhilnvl 38026
Description: The involution operation of the star division ring for the final constructed Hilbert space. (Contributed by NM, 20-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.)
Hypotheses
Ref Expression
hlhilnvl.h 𝐻 = (LHyp‘𝐾)
hlhilnvl.u 𝑈 = ((HLHil‘𝐾)‘𝑊)
hlhilnvl.r 𝑅 = (Scalar‘𝑈)
hlhilnvl.i = ((HGMap‘𝐾)‘𝑊)
hlhilnvl.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
Assertion
Ref Expression
hlhilnvl (𝜑 = (*𝑟𝑅))

Proof of Theorem hlhilnvl
StepHypRef Expression
1 fvex 6447 . . 3 ((EDRing‘𝐾)‘𝑊) ∈ V
2 hlhilnvl.i . . . 4 = ((HGMap‘𝐾)‘𝑊)
32fvexi 6448 . . 3 ∈ V
4 starvid 16365 . . . 4 *𝑟 = Slot (*𝑟‘ndx)
54setsid 16278 . . 3 ((((EDRing‘𝐾)‘𝑊) ∈ V ∧ ∈ V) → = (*𝑟‘(((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ⟩)))
61, 3, 5mp2an 685 . 2 = (*𝑟‘(((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ⟩))
7 hlhilnvl.h . . . . 5 𝐻 = (LHyp‘𝐾)
8 hlhilnvl.u . . . . 5 𝑈 = ((HLHil‘𝐾)‘𝑊)
9 hlhilnvl.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 eqid 2826 . . . . 5 ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊)
11 eqid 2826 . . . . 5 (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ⟩) = (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ⟩)
127, 8, 9, 10, 2, 11hlhilsca 38011 . . . 4 (𝜑 → (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ⟩) = (Scalar‘𝑈))
13 hlhilnvl.r . . . 4 𝑅 = (Scalar‘𝑈)
1412, 13syl6eqr 2880 . . 3 (𝜑 → (((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ⟩) = 𝑅)
1514fveq2d 6438 . 2 (𝜑 → (*𝑟‘(((EDRing‘𝐾)‘𝑊) sSet ⟨(*𝑟‘ndx), ⟩)) = (*𝑟𝑅))
166, 15syl5eq 2874 1 (𝜑 = (*𝑟𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1658  wcel 2166  Vcvv 3415  cop 4404  cfv 6124  (class class class)co 6906  ndxcnx 16220   sSet csts 16221  *𝑟cstv 16308  Scalarcsca 16309  HLchlt 35426  LHypclh 36060  EDRingcedring 36829  HGMapchg 37959  HLHilchlh 38008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-oadd 7831  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-5 11418  df-6 11419  df-7 11420  df-8 11421  df-n0 11620  df-z 11706  df-uz 11970  df-fz 12621  df-struct 16225  df-ndx 16226  df-slot 16227  df-base 16229  df-sets 16230  df-plusg 16319  df-starv 16321  df-sca 16322  df-vsca 16323  df-ip 16324  df-hlhil 38009
This theorem is referenced by:  hlhilsrnglem  38029  hlhilphllem  38035
  Copyright terms: Public domain W3C validator