Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluzadd | Structured version Visualization version GIF version |
Description: Membership in a later upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
eluzadd | ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 12272 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
2 | fveq2 6651 | . . . . . . 7 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ≥‘𝑀) = (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0))) | |
3 | 2 | eleq2d 2836 | . . . . . 6 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑁 ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)))) |
4 | fvoveq1 7166 | . . . . . . 7 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ≥‘(𝑀 + 𝐾)) = (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾))) | |
5 | 4 | eleq2d 2836 | . . . . . 6 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾)) ↔ (𝑁 + 𝐾) ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)))) |
6 | 3, 5 | imbi12d 349 | . . . . 5 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) ↔ (𝑁 ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (𝑁 + 𝐾) ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾))))) |
7 | oveq2 7151 | . . . . . . 7 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝑁 + 𝐾) = (𝑁 + if(𝐾 ∈ ℤ, 𝐾, 0))) | |
8 | oveq2 7151 | . . . . . . . 8 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾) = (if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))) | |
9 | 8 | fveq2d 6655 | . . . . . . 7 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)) = (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0)))) |
10 | 7, 9 | eleq12d 2845 | . . . . . 6 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝑁 + 𝐾) ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)) ↔ (𝑁 + if(𝐾 ∈ ℤ, 𝐾, 0)) ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))))) |
11 | 10 | imbi2d 345 | . . . . 5 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝑁 ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (𝑁 + 𝐾) ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾))) ↔ (𝑁 ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (𝑁 + if(𝐾 ∈ ℤ, 𝐾, 0)) ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0)))))) |
12 | 0z 12016 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
13 | 12 | elimel 4482 | . . . . . 6 ⊢ if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ |
14 | 12 | elimel 4482 | . . . . . 6 ⊢ if(𝐾 ∈ ℤ, 𝐾, 0) ∈ ℤ |
15 | 13, 14 | eluzaddi 12296 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (𝑁 + if(𝐾 ∈ ℤ, 𝐾, 0)) ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0)))) |
16 | 6, 11, 15 | dedth2h 4472 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾)))) |
17 | 16 | com12 32 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾)))) |
18 | 1, 17 | mpand 695 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ ℤ → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾)))) |
19 | 18 | imp 411 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ifcif 4413 ‘cfv 6328 (class class class)co 7143 0cc0 10560 + caddc 10563 ℤcz 12005 ℤ≥cuz 12267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-cnex 10616 ax-resscn 10617 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-mulrcl 10623 ax-mulcom 10624 ax-addass 10625 ax-mulass 10626 ax-distr 10627 ax-i2m1 10628 ax-1ne0 10629 ax-1rid 10630 ax-rnegex 10631 ax-rrecex 10632 ax-cnre 10633 ax-pre-lttri 10634 ax-pre-lttrn 10635 ax-pre-ltadd 10636 ax-pre-mulgt0 10637 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-nel 3054 df-ral 3073 df-rex 3074 df-reu 3075 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-uni 4792 df-iun 4878 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-riota 7101 df-ov 7146 df-oprab 7147 df-mpo 7148 df-om 7573 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-er 8292 df-en 8521 df-dom 8522 df-sdom 8523 df-pnf 10700 df-mnf 10701 df-xr 10702 df-ltxr 10703 df-le 10704 df-sub 10895 df-neg 10896 df-nn 11660 df-n0 11920 df-z 12006 df-uz 12268 |
This theorem is referenced by: seqshft2 13431 shftuz 14461 isumshft 15227 vdwlem2 16358 vdwlem8 16364 mulgnndir 18308 efgcpbllemb 18933 plymullem1 24895 coeeulem 24905 ulmshftlem 25068 ulmshft 25069 fsum2dsub 32091 caushft 35464 |
Copyright terms: Public domain | W3C validator |