Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluzadd | Structured version Visualization version GIF version |
Description: Membership in a later upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
eluzadd | ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzel2 12587 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
2 | fveq2 6774 | . . . . . . 7 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ≥‘𝑀) = (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0))) | |
3 | 2 | eleq2d 2824 | . . . . . 6 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑁 ∈ (ℤ≥‘𝑀) ↔ 𝑁 ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)))) |
4 | fvoveq1 7298 | . . . . . . 7 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ≥‘(𝑀 + 𝐾)) = (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾))) | |
5 | 4 | eleq2d 2824 | . . . . . 6 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾)) ↔ (𝑁 + 𝐾) ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)))) |
6 | 3, 5 | imbi12d 345 | . . . . 5 ⊢ (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) ↔ (𝑁 ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (𝑁 + 𝐾) ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾))))) |
7 | oveq2 7283 | . . . . . . 7 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝑁 + 𝐾) = (𝑁 + if(𝐾 ∈ ℤ, 𝐾, 0))) | |
8 | oveq2 7283 | . . . . . . . 8 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾) = (if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))) | |
9 | 8 | fveq2d 6778 | . . . . . . 7 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)) = (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0)))) |
10 | 7, 9 | eleq12d 2833 | . . . . . 6 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝑁 + 𝐾) ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)) ↔ (𝑁 + if(𝐾 ∈ ℤ, 𝐾, 0)) ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))))) |
11 | 10 | imbi2d 341 | . . . . 5 ⊢ (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝑁 ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (𝑁 + 𝐾) ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾))) ↔ (𝑁 ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (𝑁 + if(𝐾 ∈ ℤ, 𝐾, 0)) ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0)))))) |
12 | 0z 12330 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
13 | 12 | elimel 4528 | . . . . . 6 ⊢ if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ |
14 | 12 | elimel 4528 | . . . . . 6 ⊢ if(𝐾 ∈ ℤ, 𝐾, 0) ∈ ℤ |
15 | 13, 14 | eluzaddi 12611 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (𝑁 + if(𝐾 ∈ ℤ, 𝐾, 0)) ∈ (ℤ≥‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0)))) |
16 | 6, 11, 15 | dedth2h 4518 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾)))) |
17 | 16 | com12 32 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾)))) |
18 | 1, 17 | mpand 692 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝐾 ∈ ℤ → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾)))) |
19 | 18 | imp 407 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ≥‘(𝑀 + 𝐾))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ifcif 4459 ‘cfv 6433 (class class class)co 7275 0cc0 10871 + caddc 10874 ℤcz 12319 ℤ≥cuz 12582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 |
This theorem is referenced by: seqshft2 13749 shftuz 14780 isumshft 15551 vdwlem2 16683 vdwlem8 16689 mulgnndir 18732 efgcpbllemb 19361 plymullem1 25375 coeeulem 25385 ulmshftlem 25548 ulmshft 25549 fsum2dsub 32587 caushft 35919 |
Copyright terms: Public domain | W3C validator |