MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluzadd Structured version   Visualization version   GIF version

Theorem eluzadd 12298
Description: Membership in a later upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
eluzadd ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))

Proof of Theorem eluzadd
StepHypRef Expression
1 eluzel2 12272 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 fveq2 6651 . . . . . . 7 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ𝑀) = (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)))
32eleq2d 2836 . . . . . 6 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (𝑁 ∈ (ℤ𝑀) ↔ 𝑁 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))))
4 fvoveq1 7166 . . . . . . 7 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → (ℤ‘(𝑀 + 𝐾)) = (ℤ‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)))
54eleq2d 2836 . . . . . 6 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)) ↔ (𝑁 + 𝐾) ∈ (ℤ‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾))))
63, 5imbi12d 349 . . . . 5 (𝑀 = if(𝑀 ∈ ℤ, 𝑀, 0) → ((𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾))) ↔ (𝑁 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (𝑁 + 𝐾) ∈ (ℤ‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)))))
7 oveq2 7151 . . . . . . 7 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (𝑁 + 𝐾) = (𝑁 + if(𝐾 ∈ ℤ, 𝐾, 0)))
8 oveq2 7151 . . . . . . . 8 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾) = (if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0)))
98fveq2d 6655 . . . . . . 7 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → (ℤ‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)) = (ℤ‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))))
107, 9eleq12d 2845 . . . . . 6 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝑁 + 𝐾) ∈ (ℤ‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾)) ↔ (𝑁 + if(𝐾 ∈ ℤ, 𝐾, 0)) ∈ (ℤ‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0)))))
1110imbi2d 345 . . . . 5 (𝐾 = if(𝐾 ∈ ℤ, 𝐾, 0) → ((𝑁 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (𝑁 + 𝐾) ∈ (ℤ‘(if(𝑀 ∈ ℤ, 𝑀, 0) + 𝐾))) ↔ (𝑁 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (𝑁 + if(𝐾 ∈ ℤ, 𝐾, 0)) ∈ (ℤ‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))))))
12 0z 12016 . . . . . . 7 0 ∈ ℤ
1312elimel 4482 . . . . . 6 if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ
1412elimel 4482 . . . . . 6 if(𝐾 ∈ ℤ, 𝐾, 0) ∈ ℤ
1513, 14eluzaddi 12296 . . . . 5 (𝑁 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) → (𝑁 + if(𝐾 ∈ ℤ, 𝐾, 0)) ∈ (ℤ‘(if(𝑀 ∈ ℤ, 𝑀, 0) + if(𝐾 ∈ ℤ, 𝐾, 0))))
166, 11, 15dedth2h 4472 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) → (𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾))))
1716com12 32 . . 3 (𝑁 ∈ (ℤ𝑀) → ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾))))
181, 17mpand 695 . 2 (𝑁 ∈ (ℤ𝑀) → (𝐾 ∈ ℤ → (𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾))))
1918imp 411 1 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  ifcif 4413  cfv 6328  (class class class)co 7143  0cc0 10560   + caddc 10563  cz 12005  cuz 12267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617  ax-1cn 10618  ax-icn 10619  ax-addcl 10620  ax-addrcl 10621  ax-mulcl 10622  ax-mulrcl 10623  ax-mulcom 10624  ax-addass 10625  ax-mulass 10626  ax-distr 10627  ax-i2m1 10628  ax-1ne0 10629  ax-1rid 10630  ax-rnegex 10631  ax-rrecex 10632  ax-cnre 10633  ax-pre-lttri 10634  ax-pre-lttrn 10635  ax-pre-ltadd 10636  ax-pre-mulgt0 10637
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-nel 3054  df-ral 3073  df-rex 3074  df-reu 3075  df-rab 3077  df-v 3409  df-sbc 3694  df-csb 3802  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-pss 3873  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-tp 4520  df-op 4522  df-uni 4792  df-iun 4878  df-br 5026  df-opab 5088  df-mpt 5106  df-tr 5132  df-id 5423  df-eprel 5428  df-po 5436  df-so 5437  df-fr 5476  df-we 5478  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7101  df-ov 7146  df-oprab 7147  df-mpo 7148  df-om 7573  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8521  df-dom 8522  df-sdom 8523  df-pnf 10700  df-mnf 10701  df-xr 10702  df-ltxr 10703  df-le 10704  df-sub 10895  df-neg 10896  df-nn 11660  df-n0 11920  df-z 12006  df-uz 12268
This theorem is referenced by:  seqshft2  13431  shftuz  14461  isumshft  15227  vdwlem2  16358  vdwlem8  16364  mulgnndir  18308  efgcpbllemb  18933  plymullem1  24895  coeeulem  24905  ulmshftlem  25068  ulmshft  25069  fsum2dsub  32091  caushft  35464
  Copyright terms: Public domain W3C validator