MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluzadd Structured version   Visualization version   GIF version

Theorem eluzadd 12855
Description: Membership in a later upper set of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by SN, 7-Feb-2025.)
Assertion
Ref Expression
eluzadd ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))

Proof of Theorem eluzadd
StepHypRef Expression
1 eluzel2 12831 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
2 zaddcl 12606 . . 3 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ∈ ℤ)
31, 2sylan 578 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ∈ ℤ)
4 eluzelz 12836 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
5 zaddcl 12606 . . 3 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
64, 5sylan 578 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ ℤ)
71zred 12670 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℝ)
87adantr 479 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → 𝑀 ∈ ℝ)
9 eluzelre 12837 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℝ)
109adantr 479 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℝ)
11 zre 12566 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1211adantl 480 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℝ)
13 eluzle 12839 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
1413adantr 479 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → 𝑀𝑁)
158, 10, 12, 14leadd1dd 11832 . 2 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑀 + 𝐾) ≤ (𝑁 + 𝐾))
16 eluz2 12832 . 2 ((𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)) ↔ ((𝑀 + 𝐾) ∈ ℤ ∧ (𝑁 + 𝐾) ∈ ℤ ∧ (𝑀 + 𝐾) ≤ (𝑁 + 𝐾)))
173, 6, 15, 16syl3anbrc 1341 1 ((𝑁 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑁 + 𝐾) ∈ (ℤ‘(𝑀 + 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2104   class class class wbr 5147  cfv 6542  (class class class)co 7411  cr 11111   + caddc 11115  cle 11253  cz 12562  cuz 12826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827
This theorem is referenced by:  eluzaddi  12857  seqshft2  13998  shftuz  15020  isumshft  15789  vdwlem2  16919  vdwlem8  16925  mulgnndir  19019  efgcpbllemb  19664  plymullem1  25963  coeeulem  25973  ulmshftlem  26137  ulmshft  26138  fsum2dsub  33917  caushft  36932
  Copyright terms: Public domain W3C validator