![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cosq14gt0 | Structured version Visualization version GIF version |
Description: The cosine of a number strictly between -π / 2 and π / 2 is positive. (Contributed by Mario Carneiro, 25-Feb-2015.) |
Ref | Expression |
---|---|
cosq14gt0 | ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | halfpire 24437 | . . . . 5 ⊢ (π / 2) ∈ ℝ | |
2 | elioore 12410 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℝ) | |
3 | resubcl 10551 | . . . . 5 ⊢ (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((π / 2) − 𝐴) ∈ ℝ) | |
4 | 1, 2, 3 | sylancr 575 | . . . 4 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − 𝐴) ∈ ℝ) |
5 | neghalfpirx 24439 | . . . . . . 7 ⊢ -(π / 2) ∈ ℝ* | |
6 | 1 | rexri 10303 | . . . . . . 7 ⊢ (π / 2) ∈ ℝ* |
7 | elioo2 12421 | . . . . . . 7 ⊢ ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → (𝐴 ∈ (-(π / 2)(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴 ∧ 𝐴 < (π / 2)))) | |
8 | 5, 6, 7 | mp2an 672 | . . . . . 6 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) ↔ (𝐴 ∈ ℝ ∧ -(π / 2) < 𝐴 ∧ 𝐴 < (π / 2))) |
9 | 8 | simp3bi 1141 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 < (π / 2)) |
10 | posdif 10727 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 < (π / 2) ↔ 0 < ((π / 2) − 𝐴))) | |
11 | 2, 1, 10 | sylancl 574 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (𝐴 < (π / 2) ↔ 0 < ((π / 2) − 𝐴))) |
12 | 9, 11 | mpbid 222 | . . . 4 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < ((π / 2) − 𝐴)) |
13 | picn 24432 | . . . . . . . 8 ⊢ π ∈ ℂ | |
14 | halfcl 11464 | . . . . . . . 8 ⊢ (π ∈ ℂ → (π / 2) ∈ ℂ) | |
15 | 13, 14 | ax-mp 5 | . . . . . . 7 ⊢ (π / 2) ∈ ℂ |
16 | 15 | negcli 10555 | . . . . . . 7 ⊢ -(π / 2) ∈ ℂ |
17 | 13, 15 | negsubi 10565 | . . . . . . . 8 ⊢ (π + -(π / 2)) = (π − (π / 2)) |
18 | pidiv2halves 24440 | . . . . . . . . 9 ⊢ ((π / 2) + (π / 2)) = π | |
19 | 13, 15, 15, 18 | subaddrii 10576 | . . . . . . . 8 ⊢ (π − (π / 2)) = (π / 2) |
20 | 17, 19 | eqtri 2793 | . . . . . . 7 ⊢ (π + -(π / 2)) = (π / 2) |
21 | 15, 13, 16, 20 | subaddrii 10576 | . . . . . 6 ⊢ ((π / 2) − π) = -(π / 2) |
22 | 8 | simp2bi 1140 | . . . . . 6 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → -(π / 2) < 𝐴) |
23 | 21, 22 | syl5eqbr 4822 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − π) < 𝐴) |
24 | pire 24431 | . . . . . . 7 ⊢ π ∈ ℝ | |
25 | ltsub23 10714 | . . . . . . 7 ⊢ (((π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ π ∈ ℝ) → (((π / 2) − 𝐴) < π ↔ ((π / 2) − π) < 𝐴)) | |
26 | 1, 24, 25 | mp3an13 1563 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (((π / 2) − 𝐴) < π ↔ ((π / 2) − π) < 𝐴)) |
27 | 2, 26 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (((π / 2) − 𝐴) < π ↔ ((π / 2) − π) < 𝐴)) |
28 | 23, 27 | mpbird 247 | . . . 4 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − 𝐴) < π) |
29 | 0xr 10292 | . . . . 5 ⊢ 0 ∈ ℝ* | |
30 | 24 | rexri 10303 | . . . . 5 ⊢ π ∈ ℝ* |
31 | elioo2 12421 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ π ∈ ℝ*) → (((π / 2) − 𝐴) ∈ (0(,)π) ↔ (((π / 2) − 𝐴) ∈ ℝ ∧ 0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < π))) | |
32 | 29, 30, 31 | mp2an 672 | . . . 4 ⊢ (((π / 2) − 𝐴) ∈ (0(,)π) ↔ (((π / 2) − 𝐴) ∈ ℝ ∧ 0 < ((π / 2) − 𝐴) ∧ ((π / 2) − 𝐴) < π)) |
33 | 4, 12, 28, 32 | syl3anbrc 1428 | . . 3 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → ((π / 2) − 𝐴) ∈ (0(,)π)) |
34 | sinq12gt0 24480 | . . 3 ⊢ (((π / 2) − 𝐴) ∈ (0(,)π) → 0 < (sin‘((π / 2) − 𝐴))) | |
35 | 33, 34 | syl 17 | . 2 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (sin‘((π / 2) − 𝐴))) |
36 | 2 | recnd 10274 | . . 3 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 𝐴 ∈ ℂ) |
37 | sinhalfpim 24466 | . . 3 ⊢ (𝐴 ∈ ℂ → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴)) | |
38 | 36, 37 | syl 17 | . 2 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → (sin‘((π / 2) − 𝐴)) = (cos‘𝐴)) |
39 | 35, 38 | breqtrd 4813 | 1 ⊢ (𝐴 ∈ (-(π / 2)(,)(π / 2)) → 0 < (cos‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 class class class wbr 4787 ‘cfv 6030 (class class class)co 6796 ℂcc 10140 ℝcr 10141 0cc0 10142 + caddc 10145 ℝ*cxr 10279 < clt 10280 − cmin 10472 -cneg 10473 / cdiv 10890 2c2 11276 (,)cioo 12380 sincsin 15000 cosccos 15001 πcpi 15003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 ax-addf 10221 ax-mulf 10222 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-of 7048 df-om 7217 df-1st 7319 df-2nd 7320 df-supp 7451 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-oadd 7721 df-er 7900 df-map 8015 df-pm 8016 df-ixp 8067 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8436 df-fi 8477 df-sup 8508 df-inf 8509 df-oi 8575 df-card 8969 df-cda 9196 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-dec 11701 df-uz 11894 df-q 11997 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-ioo 12384 df-ioc 12385 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-fl 12801 df-seq 13009 df-exp 13068 df-fac 13265 df-bc 13294 df-hash 13322 df-shft 14015 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-limsup 14410 df-clim 14427 df-rlim 14428 df-sum 14625 df-ef 15004 df-sin 15006 df-cos 15007 df-pi 15009 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-hom 16174 df-cco 16175 df-rest 16291 df-topn 16292 df-0g 16310 df-gsum 16311 df-topgen 16312 df-pt 16313 df-prds 16316 df-xrs 16370 df-qtop 16375 df-imas 16376 df-xps 16378 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-mulg 17749 df-cntz 17957 df-cmn 18402 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-fbas 19958 df-fg 19959 df-cnfld 19962 df-top 20919 df-topon 20936 df-topsp 20958 df-bases 20971 df-cld 21044 df-ntr 21045 df-cls 21046 df-nei 21123 df-lp 21161 df-perf 21162 df-cn 21252 df-cnp 21253 df-haus 21340 df-tx 21586 df-hmeo 21779 df-fil 21870 df-fm 21962 df-flim 21963 df-flf 21964 df-xms 22345 df-ms 22346 df-tms 22347 df-cncf 22901 df-limc 23850 df-dv 23851 |
This theorem is referenced by: tanord1 24504 logcnlem4 24612 asinsinlem 24839 |
Copyright terms: Public domain | W3C validator |