Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvhvaddcl Structured version   Visualization version   GIF version

Theorem dvhvaddcl 41078
Description: Closure of the vector sum operation for the constructed full vector space H. (Contributed by NM, 26-Oct-2013.) (Revised by Mario Carneiro, 23-Jun-2014.)
Hypotheses
Ref Expression
dvhvaddcl.h 𝐻 = (LHyp‘𝐾)
dvhvaddcl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvhvaddcl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvhvaddcl.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dvhvaddcl.d 𝐷 = (Scalar‘𝑈)
dvhvaddcl.p = (+g𝐷)
dvhvaddcl.a + = (+g𝑈)
Assertion
Ref Expression
dvhvaddcl (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) ∈ (𝑇 × 𝐸))

Proof of Theorem dvhvaddcl
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvhvaddcl.h . . 3 𝐻 = (LHyp‘𝐾)
2 dvhvaddcl.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvhvaddcl.e . . 3 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 dvhvaddcl.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 dvhvaddcl.d . . 3 𝐷 = (Scalar‘𝑈)
6 dvhvaddcl.a . . 3 + = (+g𝑈)
7 dvhvaddcl.p . . 3 = (+g𝐷)
81, 2, 3, 4, 5, 6, 7dvhvadd 41075 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) = ⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩)
9 simpl 482 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 xp1st 8045 . . . . 5 (𝐹 ∈ (𝑇 × 𝐸) → (1st𝐹) ∈ 𝑇)
1110ad2antrl 728 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (1st𝐹) ∈ 𝑇)
12 xp1st 8045 . . . . 5 (𝐺 ∈ (𝑇 × 𝐸) → (1st𝐺) ∈ 𝑇)
1312ad2antll 729 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (1st𝐺) ∈ 𝑇)
141, 2ltrnco 40702 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (1st𝐹) ∈ 𝑇 ∧ (1st𝐺) ∈ 𝑇) → ((1st𝐹) ∘ (1st𝐺)) ∈ 𝑇)
159, 11, 13, 14syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((1st𝐹) ∘ (1st𝐺)) ∈ 𝑇)
16 eqid 2735 . . . . . . 7 (𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐)))) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐))))
171, 2, 3, 4, 5, 16, 7dvhfplusr 41067 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻) → = (𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐)))))
1817adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → = (𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐)))))
1918oveqd 7448 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd𝐹) (2nd𝐺)) = ((2nd𝐹)(𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐))))(2nd𝐺)))
20 xp2nd 8046 . . . . . 6 (𝐹 ∈ (𝑇 × 𝐸) → (2nd𝐹) ∈ 𝐸)
2120ad2antrl 728 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (2nd𝐹) ∈ 𝐸)
22 xp2nd 8046 . . . . . 6 (𝐺 ∈ (𝑇 × 𝐸) → (2nd𝐺) ∈ 𝐸)
2322ad2antll 729 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (2nd𝐺) ∈ 𝐸)
241, 2, 3, 16tendoplcl 40764 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (2nd𝐹) ∈ 𝐸 ∧ (2nd𝐺) ∈ 𝐸) → ((2nd𝐹)(𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐))))(2nd𝐺)) ∈ 𝐸)
259, 21, 23, 24syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd𝐹)(𝑎𝐸, 𝑏𝐸 ↦ (𝑐𝑇 ↦ ((𝑎𝑐) ∘ (𝑏𝑐))))(2nd𝐺)) ∈ 𝐸)
2619, 25eqeltrd 2839 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ((2nd𝐹) (2nd𝐺)) ∈ 𝐸)
27 opelxpi 5726 . . 3 ((((1st𝐹) ∘ (1st𝐺)) ∈ 𝑇 ∧ ((2nd𝐹) (2nd𝐺)) ∈ 𝐸) → ⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩ ∈ (𝑇 × 𝐸))
2815, 26, 27syl2anc 584 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → ⟨((1st𝐹) ∘ (1st𝐺)), ((2nd𝐹) (2nd𝐺))⟩ ∈ (𝑇 × 𝐸))
298, 28eqeltrd 2839 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹 ∈ (𝑇 × 𝐸) ∧ 𝐺 ∈ (𝑇 × 𝐸))) → (𝐹 + 𝐺) ∈ (𝑇 × 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cop 4637  cmpt 5231   × cxp 5687  ccom 5693  cfv 6563  (class class class)co 7431  cmpo 7433  1st c1st 8011  2nd c2nd 8012  +gcplusg 17298  Scalarcsca 17301  HLchlt 39332  LHypclh 39967  LTrncltrn 40084  TEndoctendo 40735  DVecHcdvh 41061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-undef 8297  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-tendo 40738  df-edring 40740  df-dvech 41062
This theorem is referenced by:  dvhvaddass  41080  dvhgrp  41090  dvhlveclem  41091
  Copyright terms: Public domain W3C validator