MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iiuni Structured version   Visualization version   GIF version

Theorem iiuni 24825
Description: The base set of the unit interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Jan-2014.)
Assertion
Ref Expression
iiuni (0[,]1) = II

Proof of Theorem iiuni
StepHypRef Expression
1 iitopon 24823 . 2 II ∈ (TopOn‘(0[,]1))
21toponunii 22854 1 (0[,]1) = II
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   cuni 4883  (class class class)co 7405  0cc0 11129  1c1 11130  [,]cicc 13365  IIcii 24819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-icc 13369  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-top 22832  df-topon 22849  df-bases 22884  df-ii 24821
This theorem is referenced by:  phtpyco2  24940  reparphti  24947  reparphtiOLD  24948  copco  24969  pcopt  24973  pcopt2  24974  pcoass  24975  pcorevlem  24977  pcorev2  24979  cnpconn  35252  pconnconn  35253  txpconn  35254  ptpconn  35255  sconnpi1  35261  txsconnlem  35262  cvxsconn  35265  cvmliftlem3  35309  cvmliftlem6  35312  cvmliftlem8  35314  cvmliftlem11  35317  cvmliftlem13  35318  cvmliftlem14  35319  cvmliftlem15  35320  cvmlift2lem1  35324  cvmlift2lem3  35327  cvmlift2lem5  35329  cvmlift2lem7  35331  cvmlift2lem9  35333  cvmlift2lem10  35334  cvmlift2lem11  35335  cvmlift2lem12  35336  cvmlift2lem13  35337  cvmliftphtlem  35339  cvmlift3lem1  35341  cvmlift3lem2  35342  cvmlift3lem4  35344  cvmlift3lem5  35345  cvmlift3lem6  35346  sepfsepc  48902
  Copyright terms: Public domain W3C validator