| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iiuni | Structured version Visualization version GIF version | ||
| Description: The base set of the unit interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 15-Jan-2014.) |
| Ref | Expression |
|---|---|
| iiuni | ⊢ (0[,]1) = ∪ II |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iitopon 24841 | . 2 ⊢ II ∈ (TopOn‘(0[,]1)) | |
| 2 | 1 | toponunii 22870 | 1 ⊢ (0[,]1) = ∪ II |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∪ cuni 4887 (class class class)co 7413 0cc0 11137 1c1 11138 [,]cicc 13372 IIcii 24837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-inf 9465 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-n0 12510 df-z 12597 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-icc 13376 df-seq 14025 df-exp 14085 df-cj 15120 df-re 15121 df-im 15122 df-sqrt 15256 df-abs 15257 df-topgen 17459 df-psmet 21318 df-xmet 21319 df-met 21320 df-bl 21321 df-mopn 21322 df-top 22848 df-topon 22865 df-bases 22900 df-ii 24839 |
| This theorem is referenced by: phtpyco2 24958 reparphti 24965 reparphtiOLD 24966 copco 24987 pcopt 24991 pcopt2 24992 pcoass 24993 pcorevlem 24995 pcorev2 24997 cnpconn 35194 pconnconn 35195 txpconn 35196 ptpconn 35197 sconnpi1 35203 txsconnlem 35204 cvxsconn 35207 cvmliftlem3 35251 cvmliftlem6 35254 cvmliftlem8 35256 cvmliftlem11 35259 cvmliftlem13 35260 cvmliftlem14 35261 cvmliftlem15 35262 cvmlift2lem1 35266 cvmlift2lem3 35269 cvmlift2lem5 35271 cvmlift2lem7 35273 cvmlift2lem9 35275 cvmlift2lem10 35276 cvmlift2lem11 35277 cvmlift2lem12 35278 cvmlift2lem13 35279 cvmliftphtlem 35281 cvmlift3lem1 35283 cvmlift3lem2 35284 cvmlift3lem4 35286 cvmlift3lem5 35287 cvmlift3lem6 35288 sepfsepc 48785 |
| Copyright terms: Public domain | W3C validator |