![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unicntop | Structured version Visualization version GIF version |
Description: The underlying set of the standard topology on the complex numbers is the set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
unicntop | ⊢ ℂ = ∪ (TopOpen‘ℂfld) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
2 | 1 | cnfldtopon 24268 | . 2 ⊢ (TopOpen‘ℂfld) ∈ (TopOn‘ℂ) |
3 | 2 | toponunii 22387 | 1 ⊢ ℂ = ∪ (TopOpen‘ℂfld) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∪ cuni 4904 ‘cfv 6535 ℂcc 11095 TopOpenctopn 17354 ℂfldccnfld 20918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 ax-pre-sup 11175 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-1st 7962 df-2nd 7963 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-1o 8453 df-er 8691 df-map 8810 df-en 8928 df-dom 8929 df-sdom 8930 df-fin 8931 df-sup 9424 df-inf 9425 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-div 11859 df-nn 12200 df-2 12262 df-3 12263 df-4 12264 df-5 12265 df-6 12266 df-7 12267 df-8 12268 df-9 12269 df-n0 12460 df-z 12546 df-dec 12665 df-uz 12810 df-q 12920 df-rp 12962 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-fz 13472 df-seq 13954 df-exp 14015 df-cj 15033 df-re 15034 df-im 15035 df-sqrt 15169 df-abs 15170 df-struct 17067 df-slot 17102 df-ndx 17114 df-base 17132 df-plusg 17197 df-mulr 17198 df-starv 17199 df-tset 17203 df-ple 17204 df-ds 17206 df-unif 17207 df-rest 17355 df-topn 17356 df-topgen 17376 df-psmet 20910 df-xmet 20911 df-met 20912 df-bl 20913 df-mopn 20914 df-cnfld 20919 df-top 22365 df-topon 22382 df-topsp 22404 df-bases 22418 df-xms 23795 df-ms 23796 |
This theorem is referenced by: cnopn 24272 csscld 24735 clsocv 24736 cncmet 24808 resscdrg 24844 limciun 25380 dvidlem 25401 dvnres 25417 dvcjbr 25435 dvrec 25441 dvexp3 25464 dveflem 25465 lhop1lem 25499 dvply1 25766 psercn 25907 abelth 25922 logdmopn 26126 efrlim 26441 lgamucov2 26510 limcrecl 44218 islpcn 44228 lptioo2cn 44234 lptioo1cn 44235 limclner 44240 fsumcncf 44467 ioccncflimc 44474 cncfuni 44475 icocncflimc 44478 cncfiooicclem1 44482 itgsubsticclem 44564 dirkercncflem2 44693 dirkercncflem4 44695 fourierdlem32 44728 fourierdlem33 44729 fourierdlem62 44757 fourierdlem93 44788 fourierdlem101 44796 fourierdlem113 44808 fouriercnp 44815 |
Copyright terms: Public domain | W3C validator |