MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkd Structured version   Visualization version   GIF version

Theorem wlkd 27956
Description: Two words representing a walk in a graph. (Contributed by AV, 7-Feb-2021.)
Hypotheses
Ref Expression
wlkd.p (𝜑𝑃 ∈ Word V)
wlkd.f (𝜑𝐹 ∈ Word V)
wlkd.l (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1))
wlkd.e (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
wlkd.n (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
wlkd.g (𝜑𝐺𝑊)
wlkd.v 𝑉 = (Vtx‘𝐺)
wlkd.i 𝐼 = (iEdg‘𝐺)
wlkd.a (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)
Assertion
Ref Expression
wlkd (𝜑𝐹(Walks‘𝐺)𝑃)
Distinct variable groups:   𝑘,𝐹   𝑃,𝑘   𝑘,𝐼   𝜑,𝑘   𝑘,𝐺   𝑘,𝑉
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem wlkd
StepHypRef Expression
1 wlkd.p . . 3 (𝜑𝑃 ∈ Word V)
2 wlkd.f . . 3 (𝜑𝐹 ∈ Word V)
3 wlkd.l . . 3 (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1))
4 wlkd.e . . 3 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
51, 2, 3, 4wlkdlem3 27954 . 2 (𝜑𝐹 ∈ Word dom 𝐼)
6 wlkd.a . . 3 (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃𝑘) ∈ 𝑉)
71, 2, 3, 6wlkdlem1 27952 . 2 (𝜑𝑃:(0...(♯‘𝐹))⟶𝑉)
8 wlkd.n . . 3 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
91, 2, 3, 4, 8wlkdlem4 27955 . 2 (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
10 wlkd.g . . 3 (𝜑𝐺𝑊)
11 wlkd.v . . . 4 𝑉 = (Vtx‘𝐺)
12 wlkd.i . . . 4 𝐼 = (iEdg‘𝐺)
1311, 12iswlk 27880 . . 3 ((𝐺𝑊𝐹 ∈ Word V ∧ 𝑃 ∈ Word V) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
1410, 2, 1, 13syl3anc 1369 . 2 (𝜑 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
155, 7, 9, 14mpbir3and 1340 1 (𝜑𝐹(Walks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  if-wif 1059  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  wss 3883  {csn 4558  {cpr 4560   class class class wbr 5070  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  ...cfz 13168  ..^cfzo 13311  chash 13972  Word cword 14145  Vtxcvtx 27269  iEdgciedg 27270  Walkscwlks 27866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-wlks 27869
This theorem is referenced by:  2wlkd  28202  3wlkd  28435
  Copyright terms: Public domain W3C validator