| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlkd | Structured version Visualization version GIF version | ||
| Description: Two words representing a walk in a graph. (Contributed by AV, 7-Feb-2021.) |
| Ref | Expression |
|---|---|
| wlkd.p | ⊢ (𝜑 → 𝑃 ∈ Word V) |
| wlkd.f | ⊢ (𝜑 → 𝐹 ∈ Word V) |
| wlkd.l | ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) |
| wlkd.e | ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) |
| wlkd.n | ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
| wlkd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| wlkd.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| wlkd.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| wlkd.a | ⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) |
| Ref | Expression |
|---|---|
| wlkd | ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkd.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ Word V) | |
| 2 | wlkd.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ Word V) | |
| 3 | wlkd.l | . . 3 ⊢ (𝜑 → (♯‘𝑃) = ((♯‘𝐹) + 1)) | |
| 4 | wlkd.e | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹)){(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) | |
| 5 | 1, 2, 3, 4 | wlkdlem3 29646 | . 2 ⊢ (𝜑 → 𝐹 ∈ Word dom 𝐼) |
| 6 | wlkd.a | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ (0...(♯‘𝐹))(𝑃‘𝑘) ∈ 𝑉) | |
| 7 | 1, 2, 3, 6 | wlkdlem1 29644 | . 2 ⊢ (𝜑 → 𝑃:(0...(♯‘𝐹))⟶𝑉) |
| 8 | wlkd.n | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))(𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) | |
| 9 | 1, 2, 3, 4, 8 | wlkdlem4 29647 | . 2 ⊢ (𝜑 → ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) |
| 10 | wlkd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 11 | wlkd.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 12 | wlkd.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 13 | 11, 12 | iswlk 29574 | . . 3 ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹 ∈ Word V ∧ 𝑃 ∈ Word V) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
| 14 | 10, 2, 1, 13 | syl3anc 1373 | . 2 ⊢ (𝜑 → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
| 15 | 5, 7, 9, 14 | mpbir3and 1343 | 1 ⊢ (𝜑 → 𝐹(Walks‘𝐺)𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 if-wif 1062 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 Vcvv 3438 ⊆ wss 3905 {csn 4579 {cpr 4581 class class class wbr 5095 dom cdm 5623 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 ...cfz 13428 ..^cfzo 13575 ♯chash 14255 Word cword 14438 Vtxcvtx 28959 iEdgciedg 28960 Walkscwlks 29560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-wlks 29563 |
| This theorem is referenced by: 2wlkd 29899 3wlkd 30132 |
| Copyright terms: Public domain | W3C validator |