Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1hegrvtxdg1r | Structured version Visualization version GIF version |
Description: The vertex degree of a graph with one hyperedge, case 3: an edge from some other vertex to the given vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 23-Feb-2021.) |
Ref | Expression |
---|---|
1hegrvtxdg1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
1hegrvtxdg1.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
1hegrvtxdg1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
1hegrvtxdg1.n | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
1hegrvtxdg1.x | ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) |
1hegrvtxdg1.i | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) |
1hegrvtxdg1.e | ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝐸) |
1hegrvtxdg1.v | ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) |
Ref | Expression |
---|---|
1hegrvtxdg1r | ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1hegrvtxdg1.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
2 | 1hegrvtxdg1.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
3 | 1hegrvtxdg1.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
4 | 1hegrvtxdg1.n | . . 3 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
5 | 4 | necomd 2998 | . 2 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
6 | 1hegrvtxdg1.x | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) | |
7 | 1hegrvtxdg1.i | . 2 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) | |
8 | prcom 4665 | . . 3 ⊢ {𝐶, 𝐵} = {𝐵, 𝐶} | |
9 | 1hegrvtxdg1.e | . . 3 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝐸) | |
10 | 8, 9 | eqsstrid 3965 | . 2 ⊢ (𝜑 → {𝐶, 𝐵} ⊆ 𝐸) |
11 | 1hegrvtxdg1.v | . 2 ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) | |
12 | 1, 2, 3, 5, 6, 7, 10, 11 | 1hegrvtxdg1 27777 | 1 ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐶) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ⊆ wss 3883 𝒫 cpw 4530 {csn 4558 {cpr 4560 〈cop 4564 ‘cfv 6418 1c1 10803 Vtxcvtx 27269 iEdgciedg 27270 VtxDegcvtxdg 27735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-xadd 12778 df-fz 13169 df-hash 13973 df-vtxdg 27736 |
This theorem is referenced by: eupth2lem3lem4 28496 |
Copyright terms: Public domain | W3C validator |