Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prodsplit | Structured version Visualization version GIF version |
Description: Product split into two factors, original by Steven Nguyen. (Contributed by metakunt, 21-Apr-2024.) |
Ref | Expression |
---|---|
prodsplit.1 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
prodsplit.2 | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
prodsplit.3 | ⊢ (𝜑 → 𝑀 ≤ 𝑁) |
prodsplit.4 | ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
prodsplit.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 𝐾))) → 𝐴 ∈ ℂ) |
Ref | Expression |
---|---|
prodsplit | ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...(𝑁 + 𝐾))𝐴 = (∏𝑘 ∈ (𝑀...𝑁)𝐴 · ∏𝑘 ∈ ((𝑁 + 1)...(𝑁 + 𝐾))𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodsplit.2 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
2 | 1 | zred 12519 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℝ) |
3 | 2 | ltp1d 11998 | . . 3 ⊢ (𝜑 → 𝑁 < (𝑁 + 1)) |
4 | fzdisj 13376 | . . 3 ⊢ (𝑁 < (𝑁 + 1) → ((𝑀...𝑁) ∩ ((𝑁 + 1)...(𝑁 + 𝐾))) = ∅) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → ((𝑀...𝑁) ∩ ((𝑁 + 1)...(𝑁 + 𝐾))) = ∅) |
6 | prodsplit.1 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | prodsplit.4 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℕ0) | |
8 | 7 | nn0zd 12517 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
9 | 1, 8 | zaddcld 12523 | . . . 4 ⊢ (𝜑 → (𝑁 + 𝐾) ∈ ℤ) |
10 | prodsplit.3 | . . . 4 ⊢ (𝜑 → 𝑀 ≤ 𝑁) | |
11 | nn0addge1 12372 | . . . . 5 ⊢ ((𝑁 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → 𝑁 ≤ (𝑁 + 𝐾)) | |
12 | 2, 7, 11 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑁 ≤ (𝑁 + 𝐾)) |
13 | 6, 9, 1, 10, 12 | elfzd 13340 | . . 3 ⊢ (𝜑 → 𝑁 ∈ (𝑀...(𝑁 + 𝐾))) |
14 | fzsplit 13375 | . . 3 ⊢ (𝑁 ∈ (𝑀...(𝑁 + 𝐾)) → (𝑀...(𝑁 + 𝐾)) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...(𝑁 + 𝐾)))) | |
15 | 13, 14 | syl 17 | . 2 ⊢ (𝜑 → (𝑀...(𝑁 + 𝐾)) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...(𝑁 + 𝐾)))) |
16 | fzfid 13786 | . 2 ⊢ (𝜑 → (𝑀...(𝑁 + 𝐾)) ∈ Fin) | |
17 | prodsplit.5 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝑁 + 𝐾))) → 𝐴 ∈ ℂ) | |
18 | 5, 15, 16, 17 | fprodsplit 15767 | 1 ⊢ (𝜑 → ∏𝑘 ∈ (𝑀...(𝑁 + 𝐾))𝐴 = (∏𝑘 ∈ (𝑀...𝑁)𝐴 · ∏𝑘 ∈ ((𝑁 + 1)...(𝑁 + 𝐾))𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∪ cun 3895 ∩ cin 3896 ∅c0 4268 class class class wbr 5089 (class class class)co 7329 ℂcc 10962 ℝcr 10963 1c1 10965 + caddc 10967 · cmul 10969 < clt 11102 ≤ cle 11103 ℕ0cn0 12326 ℤcz 12412 ...cfz 13332 ∏cprod 15706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-inf2 9490 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-sup 9291 df-oi 9359 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-n0 12327 df-z 12413 df-uz 12676 df-rp 12824 df-fz 13333 df-fzo 13476 df-seq 13815 df-exp 13876 df-hash 14138 df-cj 14901 df-re 14902 df-im 14903 df-sqrt 15037 df-abs 15038 df-clim 15288 df-prod 15707 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |