![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ply1scl0 | Structured version Visualization version GIF version |
Description: The zero scalar is zero. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
ply1scl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
ply1scl.a | ⊢ 𝐴 = (algSc‘𝑃) |
ply1scl0.z | ⊢ 0 = (0g‘𝑅) |
ply1scl0.y | ⊢ 𝑌 = (0g‘𝑃) |
Ref | Expression |
---|---|
ply1scl0 | ⊢ (𝑅 ∈ Ring → (𝐴‘ 0 ) = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2800 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | ply1scl0.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
3 | 1, 2 | ring0cl 18884 | . . 3 ⊢ (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅)) |
4 | ply1scl.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑃) | |
5 | ply1scl.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
6 | 5 | ply1sca2 19945 | . . . 4 ⊢ ( I ‘𝑅) = (Scalar‘𝑃) |
7 | df-base 16189 | . . . . 5 ⊢ Base = Slot 1 | |
8 | 7, 1 | strfvi 16237 | . . . 4 ⊢ (Base‘𝑅) = (Base‘( I ‘𝑅)) |
9 | eqid 2800 | . . . 4 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
10 | eqid 2800 | . . . 4 ⊢ (1r‘𝑃) = (1r‘𝑃) | |
11 | 4, 6, 8, 9, 10 | asclval 19657 | . . 3 ⊢ ( 0 ∈ (Base‘𝑅) → (𝐴‘ 0 ) = ( 0 ( ·𝑠 ‘𝑃)(1r‘𝑃))) |
12 | 3, 11 | syl 17 | . 2 ⊢ (𝑅 ∈ Ring → (𝐴‘ 0 ) = ( 0 ( ·𝑠 ‘𝑃)(1r‘𝑃))) |
13 | fvi 6481 | . . . . 5 ⊢ (𝑅 ∈ Ring → ( I ‘𝑅) = 𝑅) | |
14 | 13 | fveq2d 6416 | . . . 4 ⊢ (𝑅 ∈ Ring → (0g‘( I ‘𝑅)) = (0g‘𝑅)) |
15 | 14, 2 | syl6reqr 2853 | . . 3 ⊢ (𝑅 ∈ Ring → 0 = (0g‘( I ‘𝑅))) |
16 | 15 | oveq1d 6894 | . 2 ⊢ (𝑅 ∈ Ring → ( 0 ( ·𝑠 ‘𝑃)(1r‘𝑃)) = ((0g‘( I ‘𝑅))( ·𝑠 ‘𝑃)(1r‘𝑃))) |
17 | 5 | ply1lmod 19943 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
18 | 5 | ply1ring 19939 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
19 | eqid 2800 | . . . . 5 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
20 | 19, 10 | ringidcl 18883 | . . . 4 ⊢ (𝑃 ∈ Ring → (1r‘𝑃) ∈ (Base‘𝑃)) |
21 | 18, 20 | syl 17 | . . 3 ⊢ (𝑅 ∈ Ring → (1r‘𝑃) ∈ (Base‘𝑃)) |
22 | eqid 2800 | . . . 4 ⊢ (0g‘( I ‘𝑅)) = (0g‘( I ‘𝑅)) | |
23 | ply1scl0.y | . . . 4 ⊢ 𝑌 = (0g‘𝑃) | |
24 | 19, 6, 9, 22, 23 | lmod0vs 19213 | . . 3 ⊢ ((𝑃 ∈ LMod ∧ (1r‘𝑃) ∈ (Base‘𝑃)) → ((0g‘( I ‘𝑅))( ·𝑠 ‘𝑃)(1r‘𝑃)) = 𝑌) |
25 | 17, 21, 24 | syl2anc 580 | . 2 ⊢ (𝑅 ∈ Ring → ((0g‘( I ‘𝑅))( ·𝑠 ‘𝑃)(1r‘𝑃)) = 𝑌) |
26 | 12, 16, 25 | 3eqtrd 2838 | 1 ⊢ (𝑅 ∈ Ring → (𝐴‘ 0 ) = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 I cid 5220 ‘cfv 6102 (class class class)co 6879 1c1 10226 Basecbs 16183 ·𝑠 cvsca 16270 0gc0g 16414 1rcur 18816 Ringcrg 18862 LModclmod 19180 algSccascl 19633 Poly1cpl1 19868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-inf2 8789 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-iin 4714 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-se 5273 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-isom 6111 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-of 7132 df-ofr 7133 df-om 7301 df-1st 7402 df-2nd 7403 df-supp 7534 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-2o 7801 df-oadd 7804 df-er 7983 df-map 8098 df-pm 8099 df-ixp 8150 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-fsupp 8519 df-oi 8658 df-card 9052 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-nn 11314 df-2 11375 df-3 11376 df-4 11377 df-5 11378 df-6 11379 df-7 11380 df-8 11381 df-9 11382 df-n0 11580 df-z 11666 df-dec 11783 df-uz 11930 df-fz 12580 df-fzo 12720 df-seq 13055 df-hash 13370 df-struct 16185 df-ndx 16186 df-slot 16187 df-base 16189 df-sets 16190 df-ress 16191 df-plusg 16279 df-mulr 16280 df-sca 16282 df-vsca 16283 df-tset 16285 df-ple 16286 df-0g 16416 df-gsum 16417 df-mre 16560 df-mrc 16561 df-acs 16563 df-mgm 17556 df-sgrp 17598 df-mnd 17609 df-mhm 17649 df-submnd 17650 df-grp 17740 df-minusg 17741 df-sbg 17742 df-mulg 17856 df-subg 17903 df-ghm 17970 df-cntz 18061 df-cmn 18509 df-abl 18510 df-mgp 18805 df-ur 18817 df-ring 18864 df-subrg 19095 df-lmod 19182 df-lss 19250 df-ascl 19636 df-psr 19678 df-mpl 19680 df-opsr 19682 df-psr1 19871 df-ply1 19873 |
This theorem is referenced by: ply1scln0 19982 evl1gsumd 20042 pmat0opsc 20830 pmat1opsc 20831 pmat1ovscd 20832 mat2pmat1 20864 chpdmatlem2 20971 chp0mat 20978 facth1 24264 fta1g 24267 evl1at0 42973 |
Copyright terms: Public domain | W3C validator |