![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mplascl0 | Structured version Visualization version GIF version |
Description: The zero scalar as a polynomial. (Contributed by SN, 23-Nov-2024.) |
Ref | Expression |
---|---|
mplascl0.w | ⊢ 𝑊 = (𝐼 mPoly 𝑅) |
mplascl0.a | ⊢ 𝐴 = (algSc‘𝑊) |
mplascl0.o | ⊢ 𝑂 = (0g‘𝑅) |
mplascl0.0 | ⊢ 0 = (0g‘𝑊) |
mplascl0.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
mplascl0.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
Ref | Expression |
---|---|
mplascl0 | ⊢ (𝜑 → (𝐴‘𝑂) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplascl0.o | . . . . 5 ⊢ 𝑂 = (0g‘𝑅) | |
2 | mplascl0.w | . . . . . . 7 ⊢ 𝑊 = (𝐼 mPoly 𝑅) | |
3 | mplascl0.i | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
4 | mplascl0.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
5 | 2, 3, 4 | mplsca 21324 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑊)) |
6 | 5 | fveq2d 6830 | . . . . 5 ⊢ (𝜑 → (0g‘𝑅) = (0g‘(Scalar‘𝑊))) |
7 | 1, 6 | eqtrid 2788 | . . . 4 ⊢ (𝜑 → 𝑂 = (0g‘(Scalar‘𝑊))) |
8 | 7 | fveq2d 6830 | . . 3 ⊢ (𝜑 → ((algSc‘𝑊)‘𝑂) = ((algSc‘𝑊)‘(0g‘(Scalar‘𝑊)))) |
9 | eqid 2736 | . . . 4 ⊢ (algSc‘𝑊) = (algSc‘𝑊) | |
10 | eqid 2736 | . . . 4 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
11 | 4 | crngringd 19892 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
12 | 2 | mpllmod 21330 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑊 ∈ LMod) |
13 | 3, 11, 12 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) |
14 | 2 | mplring 21331 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑊 ∈ Ring) |
15 | 3, 11, 14 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Ring) |
16 | 9, 10, 13, 15 | ascl0 21195 | . . 3 ⊢ (𝜑 → ((algSc‘𝑊)‘(0g‘(Scalar‘𝑊))) = (0g‘𝑊)) |
17 | 8, 16 | eqtrd 2776 | . 2 ⊢ (𝜑 → ((algSc‘𝑊)‘𝑂) = (0g‘𝑊)) |
18 | mplascl0.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
19 | 18 | fveq1i 6827 | . 2 ⊢ (𝐴‘𝑂) = ((algSc‘𝑊)‘𝑂) |
20 | mplascl0.0 | . 2 ⊢ 0 = (0g‘𝑊) | |
21 | 17, 19, 20 | 3eqtr4g 2801 | 1 ⊢ (𝜑 → (𝐴‘𝑂) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6480 (class class class)co 7338 Scalarcsca 17063 0gc0g 17248 Ringcrg 19879 CRingccrg 19880 LModclmod 20230 algSccascl 21166 mPoly cmpl 21216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-iin 4945 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-se 5577 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-isom 6489 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-of 7596 df-ofr 7597 df-om 7782 df-1st 7900 df-2nd 7901 df-supp 8049 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-er 8570 df-map 8689 df-pm 8690 df-ixp 8758 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-fsupp 9228 df-oi 9368 df-card 9797 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-7 12143 df-8 12144 df-9 12145 df-n0 12336 df-z 12422 df-uz 12685 df-fz 13342 df-fzo 13485 df-seq 13824 df-hash 14147 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-sca 17076 df-vsca 17077 df-tset 17079 df-0g 17250 df-gsum 17251 df-mre 17393 df-mrc 17394 df-acs 17396 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-mhm 18528 df-submnd 18529 df-grp 18677 df-minusg 18678 df-sbg 18679 df-mulg 18798 df-subg 18849 df-ghm 18929 df-cntz 19020 df-cmn 19484 df-abl 19485 df-mgp 19817 df-ur 19834 df-ring 19881 df-cring 19882 df-subrg 20128 df-lmod 20232 df-lss 20301 df-ascl 21169 df-psr 21219 df-mpl 21221 |
This theorem is referenced by: evl0 40582 mhphf 40596 |
Copyright terms: Public domain | W3C validator |