| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ply1scl1 | Structured version Visualization version GIF version | ||
| Description: The one scalar is the unit polynomial. (Contributed by Stefan O'Rear, 1-Apr-2015.) (Proof shortened by SN, 12-Mar-2025.) |
| Ref | Expression |
|---|---|
| ply1scl.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ply1scl.a | ⊢ 𝐴 = (algSc‘𝑃) |
| ply1scl1.o | ⊢ 1 = (1r‘𝑅) |
| ply1scl1.n | ⊢ 𝑁 = (1r‘𝑃) |
| Ref | Expression |
|---|---|
| ply1scl1 | ⊢ (𝑅 ∈ Ring → (𝐴‘ 1 ) = 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1scl1.o | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
| 2 | ply1scl.p | . . . . . . 7 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | 2 | ply1sca 22171 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃)) |
| 4 | 3 | fveq2d 6844 | . . . . 5 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) = (1r‘(Scalar‘𝑃))) |
| 5 | 1, 4 | eqtrid 2776 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 = (1r‘(Scalar‘𝑃))) |
| 6 | 5 | fveq2d 6844 | . . 3 ⊢ (𝑅 ∈ Ring → (𝐴‘ 1 ) = (𝐴‘(1r‘(Scalar‘𝑃)))) |
| 7 | ply1scl.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑃) | |
| 8 | eqid 2729 | . . . 4 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
| 9 | 2 | ply1lmod 22170 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ LMod) |
| 10 | 2 | ply1ring 22166 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 11 | 7, 8, 9, 10 | ascl1 21828 | . . 3 ⊢ (𝑅 ∈ Ring → (𝐴‘(1r‘(Scalar‘𝑃))) = (1r‘𝑃)) |
| 12 | 6, 11 | eqtrd 2764 | . 2 ⊢ (𝑅 ∈ Ring → (𝐴‘ 1 ) = (1r‘𝑃)) |
| 13 | ply1scl1.n | . 2 ⊢ 𝑁 = (1r‘𝑃) | |
| 14 | 12, 13 | eqtr4di 2782 | 1 ⊢ (𝑅 ∈ Ring → (𝐴‘ 1 ) = 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 Scalarcsca 17200 1rcur 20102 Ringcrg 20154 algSccascl 21795 Poly1cpl1 22095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9870 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-3 12228 df-4 12229 df-5 12230 df-6 12231 df-7 12232 df-8 12233 df-9 12234 df-n0 12421 df-z 12508 df-dec 12628 df-uz 12772 df-fz 13447 df-fzo 13594 df-seq 13945 df-hash 14274 df-struct 17094 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-ress 17178 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-hom 17221 df-cco 17222 df-0g 17381 df-gsum 17382 df-prds 17387 df-pws 17389 df-mre 17524 df-mrc 17525 df-acs 17527 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-ghm 19128 df-cntz 19232 df-cmn 19697 df-abl 19698 df-mgp 20062 df-rng 20074 df-ur 20103 df-ring 20156 df-subrng 20467 df-subrg 20491 df-lmod 20801 df-lss 20871 df-ascl 21798 df-psr 21852 df-mpl 21854 df-opsr 21856 df-psr1 22098 df-ply1 22100 |
| This theorem is referenced by: ply1idvr1OLD 22216 ply1chr 22227 evls1maprhm 22297 pmat1opsc 22620 pmat1ovscd 22621 mat2pmat1 22653 chpidmat 22768 mon1pid 26093 lgsqrlem1 27291 lgsqrlem4 27294 aks6d1c1p6 42096 evl1gprodd 42099 deg1gprod 42122 deg1pow 42123 coe1id 48367 evl1at1 48375 |
| Copyright terms: Public domain | W3C validator |