Proof of Theorem assa2ass2
Step | Hyp | Ref
| Expression |
1 | | simp1 1136 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑊 ∈ AssAlg) |
2 | | simpl 482 |
. . . 4
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) → 𝐴 ∈ 𝐵) |
3 | 2 | 3ad2ant2 1134 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐴 ∈ 𝐵) |
4 | | simpl 482 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑋 ∈ 𝑉) |
5 | 4 | 3ad2ant3 1135 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑋 ∈ 𝑉) |
6 | | assa2ass.v |
. . . 4
⊢ 𝑉 = (Base‘𝑊) |
7 | | assa2ass.f |
. . . 4
⊢ 𝐹 = (Scalar‘𝑊) |
8 | | assa2ass.s |
. . . 4
⊢ · = (
·𝑠 ‘𝑊) |
9 | | assa2ass.b |
. . . 4
⊢ 𝐵 = (Base‘𝐹) |
10 | | assalmod 21903 |
. . . . 5
⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) |
11 | 10 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑊 ∈ LMod) |
12 | | simpr 484 |
. . . . 5
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ 𝐵) |
13 | 12 | 3ad2ant2 1134 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝐶 ∈ 𝐵) |
14 | | simpr 484 |
. . . . 5
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → 𝑌 ∈ 𝑉) |
15 | 14 | 3ad2ant3 1135 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑌 ∈ 𝑉) |
16 | 6, 7, 8, 9, 11, 13, 15 | lmodvscld 20899 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐶 · 𝑌) ∈ 𝑉) |
17 | | assa2ass.t |
. . . 4
⊢ × =
(.r‘𝑊) |
18 | 6, 7, 9, 8, 17 | assaass 21901 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ (𝐶 · 𝑌) ∈ 𝑉)) → ((𝐴 · 𝑋) × (𝐶 · 𝑌)) = (𝐴 · (𝑋 × (𝐶 · 𝑌)))) |
19 | 1, 3, 5, 16, 18 | syl13anc 1372 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 · 𝑋) × (𝐶 · 𝑌)) = (𝐴 · (𝑋 × (𝐶 · 𝑌)))) |
20 | 6, 7, 9, 8, 17 | assaassr 21902 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ (𝐶 · 𝑌) ∈ 𝑉)) → (𝑋 × (𝐴 · (𝐶 · 𝑌))) = (𝐴 · (𝑋 × (𝐶 · 𝑌)))) |
21 | 20 | eqcomd 2746 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ (𝐶 · 𝑌) ∈ 𝑉)) → (𝐴 · (𝑋 × (𝐶 · 𝑌))) = (𝑋 × (𝐴 · (𝐶 · 𝑌)))) |
22 | 1, 3, 5, 16, 21 | syl13anc 1372 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · (𝑋 × (𝐶 · 𝑌))) = (𝑋 × (𝐴 · (𝐶 · 𝑌)))) |
23 | | assa2ass.m |
. . . . . . 7
⊢ ∗ =
(.r‘𝐹) |
24 | 6, 7, 8, 9, 23 | lmodvsass 20907 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 ∗ 𝐶) · 𝑌) = (𝐴 · (𝐶 · 𝑌))) |
25 | 24 | eqcomd 2746 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (𝐴 · (𝐶 · 𝑌)) = ((𝐴 ∗ 𝐶) · 𝑌)) |
26 | 25 | oveq2d 7464 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉)) → (𝑋 × (𝐴 · (𝐶 · 𝑌))) = (𝑋 × ((𝐴 ∗ 𝐶) · 𝑌))) |
27 | 11, 3, 13, 15, 26 | syl13anc 1372 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑋 × (𝐴 · (𝐶 · 𝑌))) = (𝑋 × ((𝐴 ∗ 𝐶) · 𝑌))) |
28 | 7 | assasca 21905 |
. . . . . . 7
⊢ (𝑊 ∈ AssAlg → 𝐹 ∈ Ring) |
29 | 28 | adantr 480 |
. . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝐹 ∈ Ring) |
30 | 2 | adantl 481 |
. . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝐴 ∈ 𝐵) |
31 | 12 | adantl 481 |
. . . . . 6
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → 𝐶 ∈ 𝐵) |
32 | 9, 23, 29, 30, 31 | ringcld 20286 |
. . . . 5
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → (𝐴 ∗ 𝐶) ∈ 𝐵) |
33 | 32 | 3adant3 1132 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐴 ∗ 𝐶) ∈ 𝐵) |
34 | 6, 7, 9, 8, 17 | assaassr 21902 |
. . . 4
⊢ ((𝑊 ∈ AssAlg ∧ ((𝐴 ∗ 𝐶) ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑋 × ((𝐴 ∗ 𝐶) · 𝑌)) = ((𝐴 ∗ 𝐶) · (𝑋 × 𝑌))) |
35 | 1, 33, 5, 15, 34 | syl13anc 1372 |
. . 3
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑋 × ((𝐴 ∗ 𝐶) · 𝑌)) = ((𝐴 ∗ 𝐶) · (𝑋 × 𝑌))) |
36 | 27, 35 | eqtrd 2780 |
. 2
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝑋 × (𝐴 · (𝐶 · 𝑌))) = ((𝐴 ∗ 𝐶) · (𝑋 × 𝑌))) |
37 | 19, 22, 36 | 3eqtrd 2784 |
1
⊢ ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵) ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ((𝐴 · 𝑋) × (𝐶 · 𝑌)) = ((𝐴 ∗ 𝐶) · (𝑋 × 𝑌))) |