MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bhmafibid1 Structured version   Visualization version   GIF version

Theorem bhmafibid1 15350
Description: The Brahmagupta-Fibonacci identity. Express the product of two sums of two squares as a sum of two squares. First result. Remark: The proof uses a different approach than the proof of bhmafibid1cn 15348, and is a little bit shorter. (Contributed by Thierry Arnoux, 1-Feb-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
bhmafibid1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))

Proof of Theorem bhmafibid1
StepHypRef Expression
1 simpll 765 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℝ)
21recnd 11183 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℂ)
3 ax-icn 11110 . . . . . . . . . 10 i ∈ ℂ
43a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → i ∈ ℂ)
5 simplr 767 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 ∈ ℝ)
65recnd 11183 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 ∈ ℂ)
74, 6mulcld 11175 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · 𝐵) ∈ ℂ)
82, 7addcld 11174 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 + (i · 𝐵)) ∈ ℂ)
9 simprl 769 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℝ)
109recnd 11183 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℂ)
11 simprr 771 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℝ)
1211recnd 11183 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℂ)
134, 12mulcld 11175 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · 𝐷) ∈ ℂ)
1410, 13addcld 11174 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 + (i · 𝐷)) ∈ ℂ)
158, 14mulcld 11175 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℂ)
1615replimd 15082 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) = ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) + (i · (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))))))
178, 14remuld 15103 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = (((ℜ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷)))) − ((ℑ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷))))))
181, 5crred 15116 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)
199, 11crred 15116 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℜ‘(𝐶 + (i · 𝐷))) = 𝐶)
2018, 19oveq12d 7375 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((ℜ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷)))) = (𝐴 · 𝐶))
211, 5crimd 15117 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵)
229, 11crimd 15117 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℑ‘(𝐶 + (i · 𝐷))) = 𝐷)
2321, 22oveq12d 7375 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((ℑ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) = (𝐵 · 𝐷))
2420, 23oveq12d 7375 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((ℜ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷)))) − ((ℑ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷))))) = ((𝐴 · 𝐶) − (𝐵 · 𝐷)))
2517, 24eqtrd 2776 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = ((𝐴 · 𝐶) − (𝐵 · 𝐷)))
268, 14immuld 15104 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = (((ℜ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) + ((ℑ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷))))))
2718, 22oveq12d 7375 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((ℜ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) = (𝐴 · 𝐷))
2821, 19oveq12d 7375 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((ℑ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷)))) = (𝐵 · 𝐶))
2927, 28oveq12d 7375 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((ℜ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) + ((ℑ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷))))) = ((𝐴 · 𝐷) + (𝐵 · 𝐶)))
3026, 29eqtrd 2776 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = ((𝐴 · 𝐷) + (𝐵 · 𝐶)))
3130oveq2d 7373 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))) = (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶))))
3225, 31oveq12d 7375 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) + (i · (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))))) = (((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶)))))
3316, 32eqtrd 2776 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) = (((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶)))))
3433fveq2d 6846 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = (abs‘(((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶))))))
3534oveq1d 7372 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) = ((abs‘(((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶)))))↑2))
368, 14absmuld 15339 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = ((abs‘(𝐴 + (i · 𝐵))) · (abs‘(𝐶 + (i · 𝐷)))))
3736oveq1d 7372 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) = (((abs‘(𝐴 + (i · 𝐵))) · (abs‘(𝐶 + (i · 𝐷))))↑2))
388abscld 15321 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘(𝐴 + (i · 𝐵))) ∈ ℝ)
3938recnd 11183 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘(𝐴 + (i · 𝐵))) ∈ ℂ)
4014abscld 15321 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘(𝐶 + (i · 𝐷))) ∈ ℝ)
4140recnd 11183 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘(𝐶 + (i · 𝐷))) ∈ ℂ)
4239, 41sqmuld 14063 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((abs‘(𝐴 + (i · 𝐵))) · (abs‘(𝐶 + (i · 𝐷))))↑2) = (((abs‘(𝐴 + (i · 𝐵)))↑2) · ((abs‘(𝐶 + (i · 𝐷)))↑2)))
43 absreimsq 15177 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴↑2) + (𝐵↑2)))
44 absreimsq 15177 . . . 4 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((abs‘(𝐶 + (i · 𝐷)))↑2) = ((𝐶↑2) + (𝐷↑2)))
4543, 44oveqan12d 7376 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((abs‘(𝐴 + (i · 𝐵)))↑2) · ((abs‘(𝐶 + (i · 𝐷)))↑2)) = (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))))
4637, 42, 453eqtrd 2780 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) = (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))))
471, 9remulcld 11185 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 · 𝐶) ∈ ℝ)
485, 11remulcld 11185 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 · 𝐷) ∈ ℝ)
4947, 48resubcld 11583 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 · 𝐶) − (𝐵 · 𝐷)) ∈ ℝ)
501, 11remulcld 11185 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 · 𝐷) ∈ ℝ)
515, 9remulcld 11185 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 · 𝐶) ∈ ℝ)
5250, 51readdcld 11184 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 · 𝐷) + (𝐵 · 𝐶)) ∈ ℝ)
53 absreimsq 15177 . . 3 ((((𝐴 · 𝐶) − (𝐵 · 𝐷)) ∈ ℝ ∧ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) ∈ ℝ) → ((abs‘(((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶)))))↑2) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))
5449, 52, 53syl2anc 584 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((abs‘(((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶)))))↑2) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))
5535, 46, 543eqtr3d 2784 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  ici 11053   + caddc 11054   · cmul 11056  cmin 11385  2c2 12208  cexp 13967  cre 14982  cim 14983  abscabs 15119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121
This theorem is referenced by:  bhmafibid2  15351  2sqmod  26784
  Copyright terms: Public domain W3C validator