MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bhmafibid1 Structured version   Visualization version   GIF version

Theorem bhmafibid1 15418
Description: The Brahmagupta-Fibonacci identity. Express the product of two sums of two squares as a sum of two squares. First result. Remark: The proof uses a different approach than the proof of bhmafibid1cn 15416, and is a little bit shorter. (Contributed by Thierry Arnoux, 1-Feb-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
bhmafibid1 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (((๐ดโ†‘2) + (๐ตโ†‘2)) ยท ((๐ถโ†‘2) + (๐ทโ†‘2))) = ((((๐ด ยท ๐ถ) โˆ’ (๐ต ยท ๐ท))โ†‘2) + (((๐ด ยท ๐ท) + (๐ต ยท ๐ถ))โ†‘2)))

Proof of Theorem bhmafibid1
StepHypRef Expression
1 simpll 764 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ๐ด โˆˆ โ„)
21recnd 11246 . . . . . . . 8 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ๐ด โˆˆ โ„‚)
3 ax-icn 11171 . . . . . . . . . 10 i โˆˆ โ„‚
43a1i 11 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ i โˆˆ โ„‚)
5 simplr 766 . . . . . . . . . 10 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ๐ต โˆˆ โ„)
65recnd 11246 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ๐ต โˆˆ โ„‚)
74, 6mulcld 11238 . . . . . . . 8 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (i ยท ๐ต) โˆˆ โ„‚)
82, 7addcld 11237 . . . . . . 7 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (๐ด + (i ยท ๐ต)) โˆˆ โ„‚)
9 simprl 768 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ๐ถ โˆˆ โ„)
109recnd 11246 . . . . . . . 8 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ๐ถ โˆˆ โ„‚)
11 simprr 770 . . . . . . . . . 10 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ๐ท โˆˆ โ„)
1211recnd 11246 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ๐ท โˆˆ โ„‚)
134, 12mulcld 11238 . . . . . . . 8 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (i ยท ๐ท) โˆˆ โ„‚)
1410, 13addcld 11237 . . . . . . 7 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (๐ถ + (i ยท ๐ท)) โˆˆ โ„‚)
158, 14mulcld 11238 . . . . . 6 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ((๐ด + (i ยท ๐ต)) ยท (๐ถ + (i ยท ๐ท))) โˆˆ โ„‚)
1615replimd 15150 . . . . 5 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ((๐ด + (i ยท ๐ต)) ยท (๐ถ + (i ยท ๐ท))) = ((โ„œโ€˜((๐ด + (i ยท ๐ต)) ยท (๐ถ + (i ยท ๐ท)))) + (i ยท (โ„‘โ€˜((๐ด + (i ยท ๐ต)) ยท (๐ถ + (i ยท ๐ท)))))))
178, 14remuld 15171 . . . . . . 7 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (โ„œโ€˜((๐ด + (i ยท ๐ต)) ยท (๐ถ + (i ยท ๐ท)))) = (((โ„œโ€˜(๐ด + (i ยท ๐ต))) ยท (โ„œโ€˜(๐ถ + (i ยท ๐ท)))) โˆ’ ((โ„‘โ€˜(๐ด + (i ยท ๐ต))) ยท (โ„‘โ€˜(๐ถ + (i ยท ๐ท))))))
181, 5crred 15184 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (โ„œโ€˜(๐ด + (i ยท ๐ต))) = ๐ด)
199, 11crred 15184 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (โ„œโ€˜(๐ถ + (i ยท ๐ท))) = ๐ถ)
2018, 19oveq12d 7423 . . . . . . . 8 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ((โ„œโ€˜(๐ด + (i ยท ๐ต))) ยท (โ„œโ€˜(๐ถ + (i ยท ๐ท)))) = (๐ด ยท ๐ถ))
211, 5crimd 15185 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (โ„‘โ€˜(๐ด + (i ยท ๐ต))) = ๐ต)
229, 11crimd 15185 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (โ„‘โ€˜(๐ถ + (i ยท ๐ท))) = ๐ท)
2321, 22oveq12d 7423 . . . . . . . 8 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ((โ„‘โ€˜(๐ด + (i ยท ๐ต))) ยท (โ„‘โ€˜(๐ถ + (i ยท ๐ท)))) = (๐ต ยท ๐ท))
2420, 23oveq12d 7423 . . . . . . 7 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (((โ„œโ€˜(๐ด + (i ยท ๐ต))) ยท (โ„œโ€˜(๐ถ + (i ยท ๐ท)))) โˆ’ ((โ„‘โ€˜(๐ด + (i ยท ๐ต))) ยท (โ„‘โ€˜(๐ถ + (i ยท ๐ท))))) = ((๐ด ยท ๐ถ) โˆ’ (๐ต ยท ๐ท)))
2517, 24eqtrd 2766 . . . . . 6 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (โ„œโ€˜((๐ด + (i ยท ๐ต)) ยท (๐ถ + (i ยท ๐ท)))) = ((๐ด ยท ๐ถ) โˆ’ (๐ต ยท ๐ท)))
268, 14immuld 15172 . . . . . . . 8 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (โ„‘โ€˜((๐ด + (i ยท ๐ต)) ยท (๐ถ + (i ยท ๐ท)))) = (((โ„œโ€˜(๐ด + (i ยท ๐ต))) ยท (โ„‘โ€˜(๐ถ + (i ยท ๐ท)))) + ((โ„‘โ€˜(๐ด + (i ยท ๐ต))) ยท (โ„œโ€˜(๐ถ + (i ยท ๐ท))))))
2718, 22oveq12d 7423 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ((โ„œโ€˜(๐ด + (i ยท ๐ต))) ยท (โ„‘โ€˜(๐ถ + (i ยท ๐ท)))) = (๐ด ยท ๐ท))
2821, 19oveq12d 7423 . . . . . . . . 9 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ((โ„‘โ€˜(๐ด + (i ยท ๐ต))) ยท (โ„œโ€˜(๐ถ + (i ยท ๐ท)))) = (๐ต ยท ๐ถ))
2927, 28oveq12d 7423 . . . . . . . 8 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (((โ„œโ€˜(๐ด + (i ยท ๐ต))) ยท (โ„‘โ€˜(๐ถ + (i ยท ๐ท)))) + ((โ„‘โ€˜(๐ด + (i ยท ๐ต))) ยท (โ„œโ€˜(๐ถ + (i ยท ๐ท))))) = ((๐ด ยท ๐ท) + (๐ต ยท ๐ถ)))
3026, 29eqtrd 2766 . . . . . . 7 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (โ„‘โ€˜((๐ด + (i ยท ๐ต)) ยท (๐ถ + (i ยท ๐ท)))) = ((๐ด ยท ๐ท) + (๐ต ยท ๐ถ)))
3130oveq2d 7421 . . . . . 6 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (i ยท (โ„‘โ€˜((๐ด + (i ยท ๐ต)) ยท (๐ถ + (i ยท ๐ท))))) = (i ยท ((๐ด ยท ๐ท) + (๐ต ยท ๐ถ))))
3225, 31oveq12d 7423 . . . . 5 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ((โ„œโ€˜((๐ด + (i ยท ๐ต)) ยท (๐ถ + (i ยท ๐ท)))) + (i ยท (โ„‘โ€˜((๐ด + (i ยท ๐ต)) ยท (๐ถ + (i ยท ๐ท)))))) = (((๐ด ยท ๐ถ) โˆ’ (๐ต ยท ๐ท)) + (i ยท ((๐ด ยท ๐ท) + (๐ต ยท ๐ถ)))))
3316, 32eqtrd 2766 . . . 4 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ((๐ด + (i ยท ๐ต)) ยท (๐ถ + (i ยท ๐ท))) = (((๐ด ยท ๐ถ) โˆ’ (๐ต ยท ๐ท)) + (i ยท ((๐ด ยท ๐ท) + (๐ต ยท ๐ถ)))))
3433fveq2d 6889 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (absโ€˜((๐ด + (i ยท ๐ต)) ยท (๐ถ + (i ยท ๐ท)))) = (absโ€˜(((๐ด ยท ๐ถ) โˆ’ (๐ต ยท ๐ท)) + (i ยท ((๐ด ยท ๐ท) + (๐ต ยท ๐ถ))))))
3534oveq1d 7420 . 2 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ((absโ€˜((๐ด + (i ยท ๐ต)) ยท (๐ถ + (i ยท ๐ท))))โ†‘2) = ((absโ€˜(((๐ด ยท ๐ถ) โˆ’ (๐ต ยท ๐ท)) + (i ยท ((๐ด ยท ๐ท) + (๐ต ยท ๐ถ)))))โ†‘2))
368, 14absmuld 15407 . . . 4 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (absโ€˜((๐ด + (i ยท ๐ต)) ยท (๐ถ + (i ยท ๐ท)))) = ((absโ€˜(๐ด + (i ยท ๐ต))) ยท (absโ€˜(๐ถ + (i ยท ๐ท)))))
3736oveq1d 7420 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ((absโ€˜((๐ด + (i ยท ๐ต)) ยท (๐ถ + (i ยท ๐ท))))โ†‘2) = (((absโ€˜(๐ด + (i ยท ๐ต))) ยท (absโ€˜(๐ถ + (i ยท ๐ท))))โ†‘2))
388abscld 15389 . . . . 5 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (absโ€˜(๐ด + (i ยท ๐ต))) โˆˆ โ„)
3938recnd 11246 . . . 4 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (absโ€˜(๐ด + (i ยท ๐ต))) โˆˆ โ„‚)
4014abscld 15389 . . . . 5 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (absโ€˜(๐ถ + (i ยท ๐ท))) โˆˆ โ„)
4140recnd 11246 . . . 4 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (absโ€˜(๐ถ + (i ยท ๐ท))) โˆˆ โ„‚)
4239, 41sqmuld 14128 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (((absโ€˜(๐ด + (i ยท ๐ต))) ยท (absโ€˜(๐ถ + (i ยท ๐ท))))โ†‘2) = (((absโ€˜(๐ด + (i ยท ๐ต)))โ†‘2) ยท ((absโ€˜(๐ถ + (i ยท ๐ท)))โ†‘2)))
43 absreimsq 15245 . . . 4 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ ((absโ€˜(๐ด + (i ยท ๐ต)))โ†‘2) = ((๐ดโ†‘2) + (๐ตโ†‘2)))
44 absreimsq 15245 . . . 4 ((๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„) โ†’ ((absโ€˜(๐ถ + (i ยท ๐ท)))โ†‘2) = ((๐ถโ†‘2) + (๐ทโ†‘2)))
4543, 44oveqan12d 7424 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (((absโ€˜(๐ด + (i ยท ๐ต)))โ†‘2) ยท ((absโ€˜(๐ถ + (i ยท ๐ท)))โ†‘2)) = (((๐ดโ†‘2) + (๐ตโ†‘2)) ยท ((๐ถโ†‘2) + (๐ทโ†‘2))))
4637, 42, 453eqtrd 2770 . 2 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ((absโ€˜((๐ด + (i ยท ๐ต)) ยท (๐ถ + (i ยท ๐ท))))โ†‘2) = (((๐ดโ†‘2) + (๐ตโ†‘2)) ยท ((๐ถโ†‘2) + (๐ทโ†‘2))))
471, 9remulcld 11248 . . . 4 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (๐ด ยท ๐ถ) โˆˆ โ„)
485, 11remulcld 11248 . . . 4 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (๐ต ยท ๐ท) โˆˆ โ„)
4947, 48resubcld 11646 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ((๐ด ยท ๐ถ) โˆ’ (๐ต ยท ๐ท)) โˆˆ โ„)
501, 11remulcld 11248 . . . 4 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (๐ด ยท ๐ท) โˆˆ โ„)
515, 9remulcld 11248 . . . 4 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (๐ต ยท ๐ถ) โˆˆ โ„)
5250, 51readdcld 11247 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ((๐ด ยท ๐ท) + (๐ต ยท ๐ถ)) โˆˆ โ„)
53 absreimsq 15245 . . 3 ((((๐ด ยท ๐ถ) โˆ’ (๐ต ยท ๐ท)) โˆˆ โ„ โˆง ((๐ด ยท ๐ท) + (๐ต ยท ๐ถ)) โˆˆ โ„) โ†’ ((absโ€˜(((๐ด ยท ๐ถ) โˆ’ (๐ต ยท ๐ท)) + (i ยท ((๐ด ยท ๐ท) + (๐ต ยท ๐ถ)))))โ†‘2) = ((((๐ด ยท ๐ถ) โˆ’ (๐ต ยท ๐ท))โ†‘2) + (((๐ด ยท ๐ท) + (๐ต ยท ๐ถ))โ†‘2)))
5449, 52, 53syl2anc 583 . 2 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ ((absโ€˜(((๐ด ยท ๐ถ) โˆ’ (๐ต ยท ๐ท)) + (i ยท ((๐ด ยท ๐ท) + (๐ต ยท ๐ถ)))))โ†‘2) = ((((๐ด ยท ๐ถ) โˆ’ (๐ต ยท ๐ท))โ†‘2) + (((๐ด ยท ๐ท) + (๐ต ยท ๐ถ))โ†‘2)))
5535, 46, 543eqtr3d 2774 1 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โˆง (๐ถ โˆˆ โ„ โˆง ๐ท โˆˆ โ„)) โ†’ (((๐ดโ†‘2) + (๐ตโ†‘2)) ยท ((๐ถโ†‘2) + (๐ทโ†‘2))) = ((((๐ด ยท ๐ถ) โˆ’ (๐ต ยท ๐ท))โ†‘2) + (((๐ด ยท ๐ท) + (๐ต ยท ๐ถ))โ†‘2)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 395   = wceq 1533   โˆˆ wcel 2098  โ€˜cfv 6537  (class class class)co 7405  โ„‚cc 11110  โ„cr 11111  ici 11114   + caddc 11115   ยท cmul 11117   โˆ’ cmin 11448  2c2 12271  โ†‘cexp 14032  โ„œcre 15050  โ„‘cim 15051  abscabs 15187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12981  df-seq 13973  df-exp 14033  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189
This theorem is referenced by:  bhmafibid2  15419  2sqmod  27324
  Copyright terms: Public domain W3C validator