MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bhmafibid1 Structured version   Visualization version   GIF version

Theorem bhmafibid1 15434
Description: The Brahmagupta-Fibonacci identity. Express the product of two sums of two squares as a sum of two squares. First result. Remark: The proof uses a different approach than the proof of bhmafibid1cn 15432, and is a little bit shorter. (Contributed by Thierry Arnoux, 1-Feb-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
bhmafibid1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))

Proof of Theorem bhmafibid1
StepHypRef Expression
1 simpll 766 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℝ)
21recnd 11202 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℂ)
3 ax-icn 11127 . . . . . . . . . 10 i ∈ ℂ
43a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → i ∈ ℂ)
5 simplr 768 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 ∈ ℝ)
65recnd 11202 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 ∈ ℂ)
74, 6mulcld 11194 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · 𝐵) ∈ ℂ)
82, 7addcld 11193 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 + (i · 𝐵)) ∈ ℂ)
9 simprl 770 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℝ)
109recnd 11202 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℂ)
11 simprr 772 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℝ)
1211recnd 11202 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℂ)
134, 12mulcld 11194 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · 𝐷) ∈ ℂ)
1410, 13addcld 11193 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 + (i · 𝐷)) ∈ ℂ)
158, 14mulcld 11194 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℂ)
1615replimd 15163 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) = ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) + (i · (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))))))
178, 14remuld 15184 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = (((ℜ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷)))) − ((ℑ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷))))))
181, 5crred 15197 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)
199, 11crred 15197 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℜ‘(𝐶 + (i · 𝐷))) = 𝐶)
2018, 19oveq12d 7405 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((ℜ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷)))) = (𝐴 · 𝐶))
211, 5crimd 15198 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵)
229, 11crimd 15198 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℑ‘(𝐶 + (i · 𝐷))) = 𝐷)
2321, 22oveq12d 7405 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((ℑ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) = (𝐵 · 𝐷))
2420, 23oveq12d 7405 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((ℜ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷)))) − ((ℑ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷))))) = ((𝐴 · 𝐶) − (𝐵 · 𝐷)))
2517, 24eqtrd 2764 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = ((𝐴 · 𝐶) − (𝐵 · 𝐷)))
268, 14immuld 15185 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = (((ℜ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) + ((ℑ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷))))))
2718, 22oveq12d 7405 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((ℜ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) = (𝐴 · 𝐷))
2821, 19oveq12d 7405 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((ℑ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷)))) = (𝐵 · 𝐶))
2927, 28oveq12d 7405 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((ℜ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) + ((ℑ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷))))) = ((𝐴 · 𝐷) + (𝐵 · 𝐶)))
3026, 29eqtrd 2764 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = ((𝐴 · 𝐷) + (𝐵 · 𝐶)))
3130oveq2d 7403 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))) = (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶))))
3225, 31oveq12d 7405 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) + (i · (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))))) = (((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶)))))
3316, 32eqtrd 2764 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) = (((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶)))))
3433fveq2d 6862 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = (abs‘(((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶))))))
3534oveq1d 7402 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) = ((abs‘(((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶)))))↑2))
368, 14absmuld 15423 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = ((abs‘(𝐴 + (i · 𝐵))) · (abs‘(𝐶 + (i · 𝐷)))))
3736oveq1d 7402 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) = (((abs‘(𝐴 + (i · 𝐵))) · (abs‘(𝐶 + (i · 𝐷))))↑2))
388abscld 15405 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘(𝐴 + (i · 𝐵))) ∈ ℝ)
3938recnd 11202 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘(𝐴 + (i · 𝐵))) ∈ ℂ)
4014abscld 15405 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘(𝐶 + (i · 𝐷))) ∈ ℝ)
4140recnd 11202 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘(𝐶 + (i · 𝐷))) ∈ ℂ)
4239, 41sqmuld 14123 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((abs‘(𝐴 + (i · 𝐵))) · (abs‘(𝐶 + (i · 𝐷))))↑2) = (((abs‘(𝐴 + (i · 𝐵)))↑2) · ((abs‘(𝐶 + (i · 𝐷)))↑2)))
43 absreimsq 15258 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴↑2) + (𝐵↑2)))
44 absreimsq 15258 . . . 4 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((abs‘(𝐶 + (i · 𝐷)))↑2) = ((𝐶↑2) + (𝐷↑2)))
4543, 44oveqan12d 7406 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((abs‘(𝐴 + (i · 𝐵)))↑2) · ((abs‘(𝐶 + (i · 𝐷)))↑2)) = (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))))
4637, 42, 453eqtrd 2768 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) = (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))))
471, 9remulcld 11204 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 · 𝐶) ∈ ℝ)
485, 11remulcld 11204 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 · 𝐷) ∈ ℝ)
4947, 48resubcld 11606 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 · 𝐶) − (𝐵 · 𝐷)) ∈ ℝ)
501, 11remulcld 11204 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 · 𝐷) ∈ ℝ)
515, 9remulcld 11204 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 · 𝐶) ∈ ℝ)
5250, 51readdcld 11203 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 · 𝐷) + (𝐵 · 𝐶)) ∈ ℝ)
53 absreimsq 15258 . . 3 ((((𝐴 · 𝐶) − (𝐵 · 𝐷)) ∈ ℝ ∧ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) ∈ ℝ) → ((abs‘(((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶)))))↑2) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))
5449, 52, 53syl2anc 584 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((abs‘(((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶)))))↑2) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))
5535, 46, 543eqtr3d 2772 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  ici 11070   + caddc 11071   · cmul 11073  cmin 11405  2c2 12241  cexp 14026  cre 15063  cim 15064  abscabs 15200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202
This theorem is referenced by:  bhmafibid2  15435  2sqmod  27347
  Copyright terms: Public domain W3C validator