MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bhmafibid1 Structured version   Visualization version   GIF version

Theorem bhmafibid1 15370
Description: The Brahmagupta-Fibonacci identity. Express the product of two sums of two squares as a sum of two squares. First result. Remark: The proof uses a different approach than the proof of bhmafibid1cn 15368, and is a little bit shorter. (Contributed by Thierry Arnoux, 1-Feb-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
bhmafibid1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))

Proof of Theorem bhmafibid1
StepHypRef Expression
1 simpll 766 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℝ)
21recnd 11135 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℂ)
3 ax-icn 11060 . . . . . . . . . 10 i ∈ ℂ
43a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → i ∈ ℂ)
5 simplr 768 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 ∈ ℝ)
65recnd 11135 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 ∈ ℂ)
74, 6mulcld 11127 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · 𝐵) ∈ ℂ)
82, 7addcld 11126 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 + (i · 𝐵)) ∈ ℂ)
9 simprl 770 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℝ)
109recnd 11135 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℂ)
11 simprr 772 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℝ)
1211recnd 11135 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℂ)
134, 12mulcld 11127 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · 𝐷) ∈ ℂ)
1410, 13addcld 11126 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 + (i · 𝐷)) ∈ ℂ)
158, 14mulcld 11127 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) ∈ ℂ)
1615replimd 15099 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) = ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) + (i · (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))))))
178, 14remuld 15120 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = (((ℜ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷)))) − ((ℑ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷))))))
181, 5crred 15133 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴)
199, 11crred 15133 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℜ‘(𝐶 + (i · 𝐷))) = 𝐶)
2018, 19oveq12d 7359 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((ℜ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷)))) = (𝐴 · 𝐶))
211, 5crimd 15134 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵)
229, 11crimd 15134 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℑ‘(𝐶 + (i · 𝐷))) = 𝐷)
2321, 22oveq12d 7359 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((ℑ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) = (𝐵 · 𝐷))
2420, 23oveq12d 7359 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((ℜ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷)))) − ((ℑ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷))))) = ((𝐴 · 𝐶) − (𝐵 · 𝐷)))
2517, 24eqtrd 2766 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = ((𝐴 · 𝐶) − (𝐵 · 𝐷)))
268, 14immuld 15121 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = (((ℜ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) + ((ℑ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷))))))
2718, 22oveq12d 7359 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((ℜ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) = (𝐴 · 𝐷))
2821, 19oveq12d 7359 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((ℑ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷)))) = (𝐵 · 𝐶))
2927, 28oveq12d 7359 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((ℜ‘(𝐴 + (i · 𝐵))) · (ℑ‘(𝐶 + (i · 𝐷)))) + ((ℑ‘(𝐴 + (i · 𝐵))) · (ℜ‘(𝐶 + (i · 𝐷))))) = ((𝐴 · 𝐷) + (𝐵 · 𝐶)))
3026, 29eqtrd 2766 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = ((𝐴 · 𝐷) + (𝐵 · 𝐶)))
3130oveq2d 7357 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))) = (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶))))
3225, 31oveq12d 7359 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((ℜ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) + (i · (ℑ‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))))) = (((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶)))))
3316, 32eqtrd 2766 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) = (((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶)))))
3433fveq2d 6821 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = (abs‘(((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶))))))
3534oveq1d 7356 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) = ((abs‘(((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶)))))↑2))
368, 14absmuld 15359 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷)))) = ((abs‘(𝐴 + (i · 𝐵))) · (abs‘(𝐶 + (i · 𝐷)))))
3736oveq1d 7356 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) = (((abs‘(𝐴 + (i · 𝐵))) · (abs‘(𝐶 + (i · 𝐷))))↑2))
388abscld 15341 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘(𝐴 + (i · 𝐵))) ∈ ℝ)
3938recnd 11135 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘(𝐴 + (i · 𝐵))) ∈ ℂ)
4014abscld 15341 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘(𝐶 + (i · 𝐷))) ∈ ℝ)
4140recnd 11135 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (abs‘(𝐶 + (i · 𝐷))) ∈ ℂ)
4239, 41sqmuld 14060 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((abs‘(𝐴 + (i · 𝐵))) · (abs‘(𝐶 + (i · 𝐷))))↑2) = (((abs‘(𝐴 + (i · 𝐵)))↑2) · ((abs‘(𝐶 + (i · 𝐷)))↑2)))
43 absreimsq 15194 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴↑2) + (𝐵↑2)))
44 absreimsq 15194 . . . 4 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((abs‘(𝐶 + (i · 𝐷)))↑2) = ((𝐶↑2) + (𝐷↑2)))
4543, 44oveqan12d 7360 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((abs‘(𝐴 + (i · 𝐵)))↑2) · ((abs‘(𝐶 + (i · 𝐷)))↑2)) = (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))))
4637, 42, 453eqtrd 2770 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((abs‘((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))))↑2) = (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))))
471, 9remulcld 11137 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 · 𝐶) ∈ ℝ)
485, 11remulcld 11137 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 · 𝐷) ∈ ℝ)
4947, 48resubcld 11540 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 · 𝐶) − (𝐵 · 𝐷)) ∈ ℝ)
501, 11remulcld 11137 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 · 𝐷) ∈ ℝ)
515, 9remulcld 11137 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 · 𝐶) ∈ ℝ)
5250, 51readdcld 11136 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 · 𝐷) + (𝐵 · 𝐶)) ∈ ℝ)
53 absreimsq 15194 . . 3 ((((𝐴 · 𝐶) − (𝐵 · 𝐷)) ∈ ℝ ∧ ((𝐴 · 𝐷) + (𝐵 · 𝐶)) ∈ ℝ) → ((abs‘(((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶)))))↑2) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))
5449, 52, 53syl2anc 584 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((abs‘(((𝐴 · 𝐶) − (𝐵 · 𝐷)) + (i · ((𝐴 · 𝐷) + (𝐵 · 𝐶)))))↑2) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))
5535, 46, 543eqtr3d 2774 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((𝐴↑2) + (𝐵↑2)) · ((𝐶↑2) + (𝐷↑2))) = ((((𝐴 · 𝐶) − (𝐵 · 𝐷))↑2) + (((𝐴 · 𝐷) + (𝐵 · 𝐶))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  ici 11003   + caddc 11004   · cmul 11006  cmin 11339  2c2 12175  cexp 13963  cre 14999  cim 15000  abscabs 15136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138
This theorem is referenced by:  bhmafibid2  15371  2sqmod  27369
  Copyright terms: Public domain W3C validator