Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ccatval1OLD | Structured version Visualization version GIF version |
Description: Obsolete version of ccatval1 14279 as of 18-Jan-2024. Value of a symbol in the left half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) (Proof shortened by AV, 30-Apr-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ccatval1OLD | ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑆‘𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccatfval 14274 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) | |
2 | 1 | 3adant3 1131 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → (𝑆 ++ 𝑇) = (𝑥 ∈ (0..^((♯‘𝑆) + (♯‘𝑇))) ↦ if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))))) |
3 | eleq1 2828 | . . . 4 ⊢ (𝑥 = 𝐼 → (𝑥 ∈ (0..^(♯‘𝑆)) ↔ 𝐼 ∈ (0..^(♯‘𝑆)))) | |
4 | fveq2 6771 | . . . 4 ⊢ (𝑥 = 𝐼 → (𝑆‘𝑥) = (𝑆‘𝐼)) | |
5 | fvoveq1 7294 | . . . 4 ⊢ (𝑥 = 𝐼 → (𝑇‘(𝑥 − (♯‘𝑆))) = (𝑇‘(𝐼 − (♯‘𝑆)))) | |
6 | 3, 4, 5 | ifbieq12d 4493 | . . 3 ⊢ (𝑥 = 𝐼 → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) = if(𝐼 ∈ (0..^(♯‘𝑆)), (𝑆‘𝐼), (𝑇‘(𝐼 − (♯‘𝑆))))) |
7 | iftrue 4471 | . . . 4 ⊢ (𝐼 ∈ (0..^(♯‘𝑆)) → if(𝐼 ∈ (0..^(♯‘𝑆)), (𝑆‘𝐼), (𝑇‘(𝐼 − (♯‘𝑆)))) = (𝑆‘𝐼)) | |
8 | 7 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → if(𝐼 ∈ (0..^(♯‘𝑆)), (𝑆‘𝐼), (𝑇‘(𝐼 − (♯‘𝑆)))) = (𝑆‘𝐼)) |
9 | 6, 8 | sylan9eqr 2802 | . 2 ⊢ (((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) ∧ 𝑥 = 𝐼) → if(𝑥 ∈ (0..^(♯‘𝑆)), (𝑆‘𝑥), (𝑇‘(𝑥 − (♯‘𝑆)))) = (𝑆‘𝐼)) |
10 | simp3 1137 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → 𝐼 ∈ (0..^(♯‘𝑆))) | |
11 | lencl 14234 | . . . 4 ⊢ (𝑇 ∈ Word 𝐵 → (♯‘𝑇) ∈ ℕ0) | |
12 | 11 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → (♯‘𝑇) ∈ ℕ0) |
13 | elfzoext 13442 | . . 3 ⊢ ((𝐼 ∈ (0..^(♯‘𝑆)) ∧ (♯‘𝑇) ∈ ℕ0) → 𝐼 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) | |
14 | 10, 12, 13 | syl2anc 584 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → 𝐼 ∈ (0..^((♯‘𝑆) + (♯‘𝑇)))) |
15 | fvexd 6786 | . 2 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → (𝑆‘𝐼) ∈ V) | |
16 | 2, 9, 14, 15 | fvmptd 6879 | 1 ⊢ ((𝑆 ∈ Word 𝐵 ∧ 𝑇 ∈ Word 𝐵 ∧ 𝐼 ∈ (0..^(♯‘𝑆))) → ((𝑆 ++ 𝑇)‘𝐼) = (𝑆‘𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 Vcvv 3431 ifcif 4465 ↦ cmpt 5162 ‘cfv 6432 (class class class)co 7271 0cc0 10872 + caddc 10875 − cmin 11205 ℕ0cn0 12233 ..^cfzo 13381 ♯chash 14042 Word cword 14215 ++ cconcat 14271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-1st 7824 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-1o 8288 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-fin 8720 df-card 9698 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12582 df-fz 13239 df-fzo 13382 df-hash 14043 df-word 14216 df-concat 14272 |
This theorem is referenced by: ccats1val1OLD 14331 ccat2s1p1OLD 14336 |
Copyright terms: Public domain | W3C validator |