MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzosplitsnm1 Structured version   Visualization version   GIF version

Theorem fzosplitsnm1 13712
Description: Removing a singleton from a half-open integer range at the end. (Contributed by Alexander van der Vekens, 23-Mar-2018.)
Assertion
Ref Expression
fzosplitsnm1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))

Proof of Theorem fzosplitsnm1
StepHypRef Expression
1 eluzelz 12837 . . . . . 6 (𝐵 ∈ (ℤ‘(𝐴 + 1)) → 𝐵 ∈ ℤ)
21zcnd 12672 . . . . 5 (𝐵 ∈ (ℤ‘(𝐴 + 1)) → 𝐵 ∈ ℂ)
32adantl 481 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → 𝐵 ∈ ℂ)
4 ax-1cn 11171 . . . 4 1 ∈ ℂ
5 npcan 11474 . . . . 5 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐵 − 1) + 1) = 𝐵)
65eqcomd 2737 . . . 4 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → 𝐵 = ((𝐵 − 1) + 1))
73, 4, 6sylancl 585 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → 𝐵 = ((𝐵 − 1) + 1))
87oveq2d 7428 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐴..^𝐵) = (𝐴..^((𝐵 − 1) + 1)))
9 eluzp1m1 12853 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐵 − 1) ∈ (ℤ𝐴))
101adantl 481 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → 𝐵 ∈ ℤ)
11 peano2zm 12610 . . . . 5 (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ)
12 uzid 12842 . . . . 5 ((𝐵 − 1) ∈ ℤ → (𝐵 − 1) ∈ (ℤ‘(𝐵 − 1)))
13 peano2uz 12890 . . . . 5 ((𝐵 − 1) ∈ (ℤ‘(𝐵 − 1)) → ((𝐵 − 1) + 1) ∈ (ℤ‘(𝐵 − 1)))
1410, 11, 12, 134syl 19 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → ((𝐵 − 1) + 1) ∈ (ℤ‘(𝐵 − 1)))
15 elfzuzb 13500 . . . 4 ((𝐵 − 1) ∈ (𝐴...((𝐵 − 1) + 1)) ↔ ((𝐵 − 1) ∈ (ℤ𝐴) ∧ ((𝐵 − 1) + 1) ∈ (ℤ‘(𝐵 − 1))))
169, 14, 15sylanbrc 582 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐵 − 1) ∈ (𝐴...((𝐵 − 1) + 1)))
17 fzosplit 13670 . . 3 ((𝐵 − 1) ∈ (𝐴...((𝐵 − 1) + 1)) → (𝐴..^((𝐵 − 1) + 1)) = ((𝐴..^(𝐵 − 1)) ∪ ((𝐵 − 1)..^((𝐵 − 1) + 1))))
1816, 17syl 17 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐴..^((𝐵 − 1) + 1)) = ((𝐴..^(𝐵 − 1)) ∪ ((𝐵 − 1)..^((𝐵 − 1) + 1))))
191, 11syl 17 . . . . 5 (𝐵 ∈ (ℤ‘(𝐴 + 1)) → (𝐵 − 1) ∈ ℤ)
2019adantl 481 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐵 − 1) ∈ ℤ)
21 fzosn 13708 . . . 4 ((𝐵 − 1) ∈ ℤ → ((𝐵 − 1)..^((𝐵 − 1) + 1)) = {(𝐵 − 1)})
2220, 21syl 17 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → ((𝐵 − 1)..^((𝐵 − 1) + 1)) = {(𝐵 − 1)})
2322uneq2d 4164 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → ((𝐴..^(𝐵 − 1)) ∪ ((𝐵 − 1)..^((𝐵 − 1) + 1))) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))
248, 18, 233eqtrd 2775 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  cun 3947  {csn 4629  cfv 6544  (class class class)co 7412  cc 11111  1c1 11114   + caddc 11116  cmin 11449  cz 12563  cuz 12827  ...cfz 13489  ..^cfzo 13632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490  df-fzo 13633
This theorem is referenced by:  elfzonlteqm1  13713  pthdlem1  29287  clwwlkccatlem  29506  cycpmco2lem7  32558  cycpmrn  32569
  Copyright terms: Public domain W3C validator