MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzosplitsnm1 Structured version   Visualization version   GIF version

Theorem fzosplitsnm1 13095
Description: Removing a singleton from a half-open integer range at the end. (Contributed by Alexander van der Vekens, 23-Mar-2018.)
Assertion
Ref Expression
fzosplitsnm1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))

Proof of Theorem fzosplitsnm1
StepHypRef Expression
1 eluzelz 12231 . . . . . 6 (𝐵 ∈ (ℤ‘(𝐴 + 1)) → 𝐵 ∈ ℤ)
21zcnd 12066 . . . . 5 (𝐵 ∈ (ℤ‘(𝐴 + 1)) → 𝐵 ∈ ℂ)
32adantl 485 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → 𝐵 ∈ ℂ)
4 ax-1cn 10572 . . . 4 1 ∈ ℂ
5 npcan 10872 . . . . 5 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐵 − 1) + 1) = 𝐵)
65eqcomd 2827 . . . 4 ((𝐵 ∈ ℂ ∧ 1 ∈ ℂ) → 𝐵 = ((𝐵 − 1) + 1))
73, 4, 6sylancl 589 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → 𝐵 = ((𝐵 − 1) + 1))
87oveq2d 7146 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐴..^𝐵) = (𝐴..^((𝐵 − 1) + 1)))
9 eluzp1m1 12246 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐵 − 1) ∈ (ℤ𝐴))
101adantl 485 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → 𝐵 ∈ ℤ)
11 peano2zm 12003 . . . . 5 (𝐵 ∈ ℤ → (𝐵 − 1) ∈ ℤ)
12 uzid 12236 . . . . 5 ((𝐵 − 1) ∈ ℤ → (𝐵 − 1) ∈ (ℤ‘(𝐵 − 1)))
13 peano2uz 12279 . . . . 5 ((𝐵 − 1) ∈ (ℤ‘(𝐵 − 1)) → ((𝐵 − 1) + 1) ∈ (ℤ‘(𝐵 − 1)))
1410, 11, 12, 134syl 19 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → ((𝐵 − 1) + 1) ∈ (ℤ‘(𝐵 − 1)))
15 elfzuzb 12885 . . . 4 ((𝐵 − 1) ∈ (𝐴...((𝐵 − 1) + 1)) ↔ ((𝐵 − 1) ∈ (ℤ𝐴) ∧ ((𝐵 − 1) + 1) ∈ (ℤ‘(𝐵 − 1))))
169, 14, 15sylanbrc 586 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐵 − 1) ∈ (𝐴...((𝐵 − 1) + 1)))
17 fzosplit 13053 . . 3 ((𝐵 − 1) ∈ (𝐴...((𝐵 − 1) + 1)) → (𝐴..^((𝐵 − 1) + 1)) = ((𝐴..^(𝐵 − 1)) ∪ ((𝐵 − 1)..^((𝐵 − 1) + 1))))
1816, 17syl 17 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐴..^((𝐵 − 1) + 1)) = ((𝐴..^(𝐵 − 1)) ∪ ((𝐵 − 1)..^((𝐵 − 1) + 1))))
191, 11syl 17 . . . . 5 (𝐵 ∈ (ℤ‘(𝐴 + 1)) → (𝐵 − 1) ∈ ℤ)
2019adantl 485 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐵 − 1) ∈ ℤ)
21 fzosn 13091 . . . 4 ((𝐵 − 1) ∈ ℤ → ((𝐵 − 1)..^((𝐵 − 1) + 1)) = {(𝐵 − 1)})
2220, 21syl 17 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → ((𝐵 − 1)..^((𝐵 − 1) + 1)) = {(𝐵 − 1)})
2322uneq2d 4115 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → ((𝐴..^(𝐵 − 1)) ∪ ((𝐵 − 1)..^((𝐵 − 1) + 1))) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))
248, 18, 233eqtrd 2860 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (ℤ‘(𝐴 + 1))) → (𝐴..^𝐵) = ((𝐴..^(𝐵 − 1)) ∪ {(𝐵 − 1)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  cun 3908  {csn 4540  cfv 6328  (class class class)co 7130  cc 10512  1c1 10515   + caddc 10517  cmin 10847  cz 11959  cuz 12221  ...cfz 12875  ..^cfzo 13016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-nn 11616  df-n0 11876  df-z 11960  df-uz 12222  df-fz 12876  df-fzo 13017
This theorem is referenced by:  elfzonlteqm1  13096  pthdlem1  27534  clwwlkccatlem  27753  cycpmco2lem7  30782  cycpmrn  30793
  Copyright terms: Public domain W3C validator