MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzonn0p1 Structured version   Visualization version   GIF version

Theorem fzonn0p1 12799
Description: A nonnegative integer is element of the half-open range of nonnegative integers with the element increased by one as an upper bound. (Contributed by Alexander van der Vekens, 5-Aug-2018.)
Assertion
Ref Expression
fzonn0p1 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(𝑁 + 1)))

Proof of Theorem fzonn0p1
StepHypRef Expression
1 id 22 . 2 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
2 nn0p1nn 11620 . 2 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
3 nn0re 11589 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
43ltp1d 11247 . 2 (𝑁 ∈ ℕ0𝑁 < (𝑁 + 1))
5 elfzo0 12763 . 2 (𝑁 ∈ (0..^(𝑁 + 1)) ↔ (𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ ∧ 𝑁 < (𝑁 + 1)))
61, 2, 4, 5syl3anbrc 1444 1 (𝑁 ∈ ℕ0𝑁 ∈ (0..^(𝑁 + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2157   class class class wbr 4844  (class class class)co 6879  0cc0 10225  1c1 10226   + caddc 10228   < clt 10364  cn 11313  0cn0 11579  ..^cfzo 12719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-om 7301  df-1st 7402  df-2nd 7403  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-er 7983  df-en 8197  df-dom 8198  df-sdom 8199  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-nn 11314  df-n0 11580  df-z 11666  df-uz 11930  df-fz 12580  df-fzo 12720
This theorem is referenced by:  ccatw2s1p1  13659  wwlksnext  27161  wwlksnredwwlkn  27164  wwlksnredwwlknOLD  27165  wwlksnextproplem2  27191  wwlksnextproplem2OLD  27192  wwlksnwwlksnon  27201  wwlksnwwlksnonOLD  27203  iwrdsplit  30964  iwrdsplitOLD  30965  reprsuc  31212  breprexplema  31227  iccelpart  42204
  Copyright terms: Public domain W3C validator