Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sq2 | Structured version Visualization version GIF version |
Description: The square of 2 is 4. (Contributed by NM, 22-Aug-1999.) |
Ref | Expression |
---|---|
sq2 | ⊢ (2↑2) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 12048 | . . 3 ⊢ 2 ∈ ℂ | |
2 | 1 | sqvali 13897 | . 2 ⊢ (2↑2) = (2 · 2) |
3 | 2t2e4 12137 | . 2 ⊢ (2 · 2) = 4 | |
4 | 2, 3 | eqtri 2766 | 1 ⊢ (2↑2) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7275 · cmul 10876 2c2 12028 4c4 12030 ↑cexp 13782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-n0 12234 df-z 12320 df-uz 12583 df-seq 13722 df-exp 13783 |
This theorem is referenced by: sq4e2t8 13916 cu2 13917 sqoddm1div8 13958 faclbnd2 14005 sqrt4 14984 amgm2 15081 ef01bndlem 15893 cos2bnd 15897 pythagtriplem1 16517 4sqlem12 16657 2exp4 16786 2exp5 16787 efmnd2hash 18533 lt6abl 19496 csbren 24563 minveclem2 24590 sincos6thpi 25672 heron 25988 quad2 25989 dcubic2 25994 mcubic 25997 dquartlem2 26002 dquart 26003 quart1 26006 quartlem1 26007 chtublem 26359 chtub 26360 bclbnd 26428 bposlem6 26437 bposlem8 26439 addsqnreup 26591 addsq2nreurex 26592 chebbnd1lem3 26619 chebbnd1 26620 ipidsq 29072 minvecolem2 29237 normpar2i 29518 sqsscirc1 31858 lcmineqlem21 40057 aks4d1p1p7 40082 aks4d1p1p5 40083 flt4lem5e 40493 wallispi2lem1 43612 stirlinglem3 43617 stirlinglem10 43624 fmtno1 44993 fmtno2 45002 fmtnofac1 45022 m2prm 45043 lighneallem2 45058 lighneallem4a 45060 exple2lt6 45700 ackval3 46029 ackval42 46042 ackval42a 46043 itsclc0yqsollem1 46108 itscnhlinecirc02plem1 46128 |
Copyright terms: Public domain | W3C validator |