Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sq2 | Structured version Visualization version GIF version |
Description: The square of 2 is 4. (Contributed by NM, 22-Aug-1999.) |
Ref | Expression |
---|---|
sq2 | ⊢ (2↑2) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 12037 | . . 3 ⊢ 2 ∈ ℂ | |
2 | 1 | sqvali 13886 | . 2 ⊢ (2↑2) = (2 · 2) |
3 | 2t2e4 12126 | . 2 ⊢ (2 · 2) = 4 | |
4 | 2, 3 | eqtri 2766 | 1 ⊢ (2↑2) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7269 · cmul 10865 2c2 12017 4c4 12019 ↑cexp 13771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 ax-cnex 10916 ax-resscn 10917 ax-1cn 10918 ax-icn 10919 ax-addcl 10920 ax-addrcl 10921 ax-mulcl 10922 ax-mulrcl 10923 ax-mulcom 10924 ax-addass 10925 ax-mulass 10926 ax-distr 10927 ax-i2m1 10928 ax-1ne0 10929 ax-1rid 10930 ax-rnegex 10931 ax-rrecex 10932 ax-cnre 10933 ax-pre-lttri 10934 ax-pre-lttrn 10935 ax-pre-ltadd 10936 ax-pre-mulgt0 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5486 df-eprel 5492 df-po 5500 df-so 5501 df-fr 5541 df-we 5543 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-pred 6197 df-ord 6264 df-on 6265 df-lim 6266 df-suc 6267 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-er 8487 df-en 8723 df-dom 8724 df-sdom 8725 df-pnf 11000 df-mnf 11001 df-xr 11002 df-ltxr 11003 df-le 11004 df-sub 11196 df-neg 11197 df-nn 11963 df-2 12025 df-3 12026 df-4 12027 df-n0 12223 df-z 12309 df-uz 12572 df-seq 13711 df-exp 13772 |
This theorem is referenced by: sq4e2t8 13905 cu2 13906 sqoddm1div8 13947 faclbnd2 13994 sqrt4 14973 amgm2 15070 ef01bndlem 15882 cos2bnd 15886 pythagtriplem1 16506 4sqlem12 16646 2exp4 16775 2exp5 16776 efmnd2hash 18522 lt6abl 19485 csbren 24552 minveclem2 24579 sincos6thpi 25661 heron 25977 quad2 25978 dcubic2 25983 mcubic 25986 dquartlem2 25991 dquart 25992 quart1 25995 quartlem1 25996 chtublem 26348 chtub 26349 bclbnd 26417 bposlem6 26426 bposlem8 26428 addsqnreup 26580 addsq2nreurex 26581 chebbnd1lem3 26608 chebbnd1 26609 ipidsq 29059 minvecolem2 29224 normpar2i 29505 sqsscirc1 31845 lcmineqlem21 40044 aks4d1p1p7 40069 aks4d1p1p5 40070 flt4lem5e 40480 wallispi2lem1 43572 stirlinglem3 43577 stirlinglem10 43584 fmtno1 44950 fmtno2 44959 fmtnofac1 44979 m2prm 45000 lighneallem2 45015 lighneallem4a 45017 exple2lt6 45657 ackval3 45986 ackval42 45999 ackval42a 46000 itsclc0yqsollem1 46065 itscnhlinecirc02plem1 46085 |
Copyright terms: Public domain | W3C validator |