| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sq2 | Structured version Visualization version GIF version | ||
| Description: The square of 2 is 4. (Contributed by NM, 22-Aug-1999.) |
| Ref | Expression |
|---|---|
| sq2 | ⊢ (2↑2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12221 | . . 3 ⊢ 2 ∈ ℂ | |
| 2 | 1 | sqvali 14105 | . 2 ⊢ (2↑2) = (2 · 2) |
| 3 | 2t2e4 12305 | . 2 ⊢ (2 · 2) = 4 | |
| 4 | 2, 3 | eqtri 2752 | 1 ⊢ (2↑2) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7353 · cmul 11033 2c2 12201 4c4 12203 ↑cexp 13986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-n0 12403 df-z 12490 df-uz 12754 df-seq 13927 df-exp 13987 |
| This theorem is referenced by: sq4e2t8 14124 cu2 14125 sqoddm1div8 14168 faclbnd2 14216 sqrt4 15197 amgm2 15295 ef01bndlem 16111 cos2bnd 16115 pythagtriplem1 16746 4sqlem12 16886 2exp4 17014 2exp5 17015 efmnd2hash 18786 lt6abl 19792 csbren 25315 minveclem2 25342 sincos6thpi 26441 heron 26764 quad2 26765 dcubic2 26770 mcubic 26773 dquartlem2 26778 dquart 26779 quart1 26782 quartlem1 26783 chtublem 27138 chtub 27139 bclbnd 27207 bposlem6 27216 bposlem8 27218 addsqnreup 27370 addsq2nreurex 27371 chebbnd1lem3 27398 chebbnd1 27399 ipidsq 30672 minvecolem2 30837 normpar2i 31118 iconstr 33735 constrresqrtcl 33746 cos9thpiminplylem1 33751 sqsscirc1 33877 lcmineqlem21 42025 aks4d1p1p7 42050 aks4d1p1p5 42051 flt4lem5e 42632 wallispi2lem1 46056 stirlinglem3 46061 stirlinglem10 46068 fmtno1 47529 fmtno2 47538 fmtnofac1 47558 m2prm 47579 lighneallem2 47594 lighneallem4a 47596 exple2lt6 48352 ackval3 48672 ackval42 48685 ackval42a 48686 itsclc0yqsollem1 48751 itscnhlinecirc02plem1 48771 |
| Copyright terms: Public domain | W3C validator |