| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sq2 | Structured version Visualization version GIF version | ||
| Description: The square of 2 is 4. (Contributed by NM, 22-Aug-1999.) |
| Ref | Expression |
|---|---|
| sq2 | ⊢ (2↑2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12261 | . . 3 ⊢ 2 ∈ ℂ | |
| 2 | 1 | sqvali 14145 | . 2 ⊢ (2↑2) = (2 · 2) |
| 3 | 2t2e4 12345 | . 2 ⊢ (2 · 2) = 4 | |
| 4 | 2, 3 | eqtri 2752 | 1 ⊢ (2↑2) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 · cmul 11073 2c2 12241 4c4 12243 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: sq4e2t8 14164 cu2 14165 sqoddm1div8 14208 faclbnd2 14256 sqrt4 15238 amgm2 15336 ef01bndlem 16152 cos2bnd 16156 pythagtriplem1 16787 4sqlem12 16927 2exp4 17055 2exp5 17056 efmnd2hash 18821 lt6abl 19825 csbren 25299 minveclem2 25326 sincos6thpi 26425 heron 26748 quad2 26749 dcubic2 26754 mcubic 26757 dquartlem2 26762 dquart 26763 quart1 26766 quartlem1 26767 chtublem 27122 chtub 27123 bclbnd 27191 bposlem6 27200 bposlem8 27202 addsqnreup 27354 addsq2nreurex 27355 chebbnd1lem3 27382 chebbnd1 27383 ipidsq 30639 minvecolem2 30804 normpar2i 31085 iconstr 33756 constrresqrtcl 33767 cos9thpiminplylem1 33772 sqsscirc1 33898 lcmineqlem21 42037 aks4d1p1p7 42062 aks4d1p1p5 42063 flt4lem5e 42644 wallispi2lem1 46069 stirlinglem3 46074 stirlinglem10 46081 fmtno1 47542 fmtno2 47551 fmtnofac1 47571 m2prm 47592 lighneallem2 47607 lighneallem4a 47609 exple2lt6 48352 ackval3 48672 ackval42 48685 ackval42a 48686 itsclc0yqsollem1 48751 itscnhlinecirc02plem1 48771 |
| Copyright terms: Public domain | W3C validator |