| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sq2 | Structured version Visualization version GIF version | ||
| Description: The square of 2 is 4. (Contributed by NM, 22-Aug-1999.) |
| Ref | Expression |
|---|---|
| sq2 | ⊢ (2↑2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12200 | . . 3 ⊢ 2 ∈ ℂ | |
| 2 | 1 | sqvali 14087 | . 2 ⊢ (2↑2) = (2 · 2) |
| 3 | 2t2e4 12284 | . 2 ⊢ (2 · 2) = 4 | |
| 4 | 2, 3 | eqtri 2754 | 1 ⊢ (2↑2) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7346 · cmul 11011 2c2 12180 4c4 12182 ↑cexp 13968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-n0 12382 df-z 12469 df-uz 12733 df-seq 13909 df-exp 13969 |
| This theorem is referenced by: sq4e2t8 14106 cu2 14107 sqoddm1div8 14150 faclbnd2 14198 sqrt4 15179 amgm2 15277 ef01bndlem 16093 cos2bnd 16097 pythagtriplem1 16728 4sqlem12 16868 2exp4 16996 2exp5 16997 efmnd2hash 18802 lt6abl 19808 csbren 25327 minveclem2 25354 sincos6thpi 26453 heron 26776 quad2 26777 dcubic2 26782 mcubic 26785 dquartlem2 26790 dquart 26791 quart1 26794 quartlem1 26795 chtublem 27150 chtub 27151 bclbnd 27219 bposlem6 27228 bposlem8 27230 addsqnreup 27382 addsq2nreurex 27383 chebbnd1lem3 27410 chebbnd1 27411 ipidsq 30688 minvecolem2 30853 normpar2i 31134 iconstr 33777 constrresqrtcl 33788 cos9thpiminplylem1 33793 sqsscirc1 33919 lcmineqlem21 42088 aks4d1p1p7 42113 aks4d1p1p5 42114 flt4lem5e 42695 wallispi2lem1 46115 stirlinglem3 46120 stirlinglem10 46127 fmtno1 47578 fmtno2 47587 fmtnofac1 47607 m2prm 47628 lighneallem2 47643 lighneallem4a 47645 exple2lt6 48401 ackval3 48721 ackval42 48734 ackval42a 48735 itsclc0yqsollem1 48800 itscnhlinecirc02plem1 48820 |
| Copyright terms: Public domain | W3C validator |