| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sq2 | Structured version Visualization version GIF version | ||
| Description: The square of 2 is 4. (Contributed by NM, 22-Aug-1999.) |
| Ref | Expression |
|---|---|
| sq2 | ⊢ (2↑2) = 4 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12209 | . . 3 ⊢ 2 ∈ ℂ | |
| 2 | 1 | sqvali 14091 | . 2 ⊢ (2↑2) = (2 · 2) |
| 3 | 2t2e4 12293 | . 2 ⊢ (2 · 2) = 4 | |
| 4 | 2, 3 | eqtri 2756 | 1 ⊢ (2↑2) = 4 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7354 · cmul 11020 2c2 12189 4c4 12191 ↑cexp 13972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-n0 12391 df-z 12478 df-uz 12741 df-seq 13913 df-exp 13973 |
| This theorem is referenced by: sq4e2t8 14110 cu2 14111 sqoddm1div8 14154 faclbnd2 14202 sqrt4 15183 amgm2 15281 ef01bndlem 16097 cos2bnd 16101 pythagtriplem1 16732 4sqlem12 16872 2exp4 17000 2exp5 17001 efmnd2hash 18806 lt6abl 19811 csbren 25329 minveclem2 25356 sincos6thpi 26455 heron 26778 quad2 26779 dcubic2 26784 mcubic 26787 dquartlem2 26792 dquart 26793 quart1 26796 quartlem1 26797 chtublem 27152 chtub 27153 bclbnd 27221 bposlem6 27230 bposlem8 27232 addsqnreup 27384 addsq2nreurex 27385 chebbnd1lem3 27412 chebbnd1 27413 ipidsq 30694 minvecolem2 30859 normpar2i 31140 iconstr 33802 constrresqrtcl 33813 cos9thpiminplylem1 33818 sqsscirc1 33944 lcmineqlem21 42165 aks4d1p1p7 42190 aks4d1p1p5 42191 flt4lem5e 42777 wallispi2lem1 46196 stirlinglem3 46201 stirlinglem10 46208 fmtno1 47668 fmtno2 47677 fmtnofac1 47697 m2prm 47718 lighneallem2 47733 lighneallem4a 47735 exple2lt6 48491 ackval3 48811 ackval42 48824 ackval42a 48825 itsclc0yqsollem1 48890 itscnhlinecirc02plem1 48910 |
| Copyright terms: Public domain | W3C validator |