Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sq2 | Structured version Visualization version GIF version |
Description: The square of 2 is 4. (Contributed by NM, 22-Aug-1999.) |
Ref | Expression |
---|---|
sq2 | ⊢ (2↑2) = 4 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 11978 | . . 3 ⊢ 2 ∈ ℂ | |
2 | 1 | sqvali 13825 | . 2 ⊢ (2↑2) = (2 · 2) |
3 | 2t2e4 12067 | . 2 ⊢ (2 · 2) = 4 | |
4 | 2, 3 | eqtri 2766 | 1 ⊢ (2↑2) = 4 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 (class class class)co 7255 · cmul 10807 2c2 11958 4c4 11960 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-exp 13711 |
This theorem is referenced by: sq4e2t8 13844 cu2 13845 sqoddm1div8 13886 faclbnd2 13933 sqrt4 14912 amgm2 15009 ef01bndlem 15821 cos2bnd 15825 pythagtriplem1 16445 4sqlem12 16585 2exp4 16714 2exp5 16715 efmnd2hash 18448 lt6abl 19411 csbren 24468 minveclem2 24495 sincos6thpi 25577 heron 25893 quad2 25894 dcubic2 25899 mcubic 25902 dquartlem2 25907 dquart 25908 quart1 25911 quartlem1 25912 chtublem 26264 chtub 26265 bclbnd 26333 bposlem6 26342 bposlem8 26344 addsqnreup 26496 addsq2nreurex 26497 chebbnd1lem3 26524 chebbnd1 26525 ipidsq 28973 minvecolem2 29138 normpar2i 29419 sqsscirc1 31760 lcmineqlem21 39985 aks4d1p1p7 40010 aks4d1p1p5 40011 flt4lem5e 40409 wallispi2lem1 43502 stirlinglem3 43507 stirlinglem10 43514 fmtno1 44881 fmtno2 44890 fmtnofac1 44910 m2prm 44931 lighneallem2 44946 lighneallem4a 44948 exple2lt6 45588 ackval3 45917 ackval42 45930 ackval42a 45931 itsclc0yqsollem1 45996 itscnhlinecirc02plem1 46016 |
Copyright terms: Public domain | W3C validator |