![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1rhm0to0ALT | Structured version Visualization version GIF version |
Description: Alternate proof for f1ghm0to0 20175. Using ghmf1 19038 does not make the proof shorter and requires disjoint variable restrictions! (Contributed by AV, 24-Oct-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
gim0to0ALT.a | ⊢ 𝐴 = (Base‘𝑅) |
gim0to0ALT.b | ⊢ 𝐵 = (Base‘𝑆) |
gim0to0ALT.n | ⊢ 𝑁 = (0g‘𝑆) |
gim0to0ALT.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
f1rhm0to0ALT | ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmghm 20158 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
2 | 1 | adantr 482 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑋 ∈ 𝐴) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
3 | gim0to0ALT.a | . . . . . . . 8 ⊢ 𝐴 = (Base‘𝑅) | |
4 | gim0to0ALT.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑆) | |
5 | gim0to0ALT.0 | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
6 | gim0to0ALT.n | . . . . . . . 8 ⊢ 𝑁 = (0g‘𝑆) | |
7 | 3, 4, 5, 6 | ghmf1 19038 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴–1-1→𝐵 ↔ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 𝑁 → 𝑥 = 0 ))) |
8 | 2, 7 | syl 17 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑋 ∈ 𝐴) → (𝐹:𝐴–1-1→𝐵 ↔ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 𝑁 → 𝑥 = 0 ))) |
9 | fveq2 6843 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
10 | 9 | eqeq1d 2739 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = 𝑁 ↔ (𝐹‘𝑋) = 𝑁)) |
11 | eqeq1 2741 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0 )) | |
12 | 10, 11 | imbi12d 345 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (((𝐹‘𝑥) = 𝑁 → 𝑥 = 0 ) ↔ ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 ))) |
13 | 12 | rspcv 3578 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 𝑁 → 𝑥 = 0 ) → ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 ))) |
14 | 13 | adantl 483 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑋 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 𝑁 → 𝑥 = 0 ) → ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 ))) |
15 | 8, 14 | sylbid 239 | . . . . 5 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑋 ∈ 𝐴) → (𝐹:𝐴–1-1→𝐵 → ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 ))) |
16 | 15 | ex 414 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑋 ∈ 𝐴 → (𝐹:𝐴–1-1→𝐵 → ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 )))) |
17 | 16 | com23 86 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐴–1-1→𝐵 → (𝑋 ∈ 𝐴 → ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 )))) |
18 | 17 | 3imp 1112 | . 2 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 )) |
19 | fveq2 6843 | . . . 4 ⊢ (𝑋 = 0 → (𝐹‘𝑋) = (𝐹‘ 0 )) | |
20 | 5, 6 | ghmid 19015 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘ 0 ) = 𝑁) |
21 | 1, 20 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘ 0 ) = 𝑁) |
22 | 21 | 3ad2ant1 1134 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐹‘ 0 ) = 𝑁) |
23 | 19, 22 | sylan9eqr 2799 | . . 3 ⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝐹‘𝑋) = 𝑁) |
24 | 23 | ex 414 | . 2 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → (𝑋 = 0 → (𝐹‘𝑋) = 𝑁)) |
25 | 18, 24 | impbid 211 | 1 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3065 –1-1→wf1 6494 ‘cfv 6497 (class class class)co 7358 Basecbs 17084 0gc0g 17322 GrpHom cghm 19006 RingHom crh 20144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8649 df-map 8768 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-nn 12155 df-2 12217 df-sets 17037 df-slot 17055 df-ndx 17067 df-base 17085 df-plusg 17147 df-0g 17324 df-mgm 18498 df-sgrp 18547 df-mnd 18558 df-mhm 18602 df-grp 18752 df-minusg 18753 df-sbg 18754 df-ghm 19007 df-mgp 19898 df-ur 19915 df-ring 19967 df-rnghom 20147 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |