![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1rhm0to0ALT | Structured version Visualization version GIF version |
Description: Alternate proof for f1ghm0to0 20271. Using ghmf1 19115 does not make the proof shorter and requires disjoint variable restrictions! (Contributed by AV, 24-Oct-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
gim0to0ALT.a | ⊢ 𝐴 = (Base‘𝑅) |
gim0to0ALT.b | ⊢ 𝐵 = (Base‘𝑆) |
gim0to0ALT.n | ⊢ 𝑁 = (0g‘𝑆) |
gim0to0ALT.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
f1rhm0to0ALT | ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rhmghm 20254 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
2 | 1 | adantr 481 | . . . . . . 7 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑋 ∈ 𝐴) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
3 | gim0to0ALT.a | . . . . . . . 8 ⊢ 𝐴 = (Base‘𝑅) | |
4 | gim0to0ALT.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑆) | |
5 | gim0to0ALT.0 | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
6 | gim0to0ALT.n | . . . . . . . 8 ⊢ 𝑁 = (0g‘𝑆) | |
7 | 3, 4, 5, 6 | ghmf1 19115 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴–1-1→𝐵 ↔ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 𝑁 → 𝑥 = 0 ))) |
8 | 2, 7 | syl 17 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑋 ∈ 𝐴) → (𝐹:𝐴–1-1→𝐵 ↔ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 𝑁 → 𝑥 = 0 ))) |
9 | fveq2 6888 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
10 | 9 | eqeq1d 2734 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) = 𝑁 ↔ (𝐹‘𝑋) = 𝑁)) |
11 | eqeq1 2736 | . . . . . . . . 9 ⊢ (𝑥 = 𝑋 → (𝑥 = 0 ↔ 𝑋 = 0 )) | |
12 | 10, 11 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑥 = 𝑋 → (((𝐹‘𝑥) = 𝑁 → 𝑥 = 0 ) ↔ ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 ))) |
13 | 12 | rspcv 3608 | . . . . . . 7 ⊢ (𝑋 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 𝑁 → 𝑥 = 0 ) → ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 ))) |
14 | 13 | adantl 482 | . . . . . 6 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑋 ∈ 𝐴) → (∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 𝑁 → 𝑥 = 0 ) → ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 ))) |
15 | 8, 14 | sylbid 239 | . . . . 5 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑋 ∈ 𝐴) → (𝐹:𝐴–1-1→𝐵 → ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 ))) |
16 | 15 | ex 413 | . . . 4 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑋 ∈ 𝐴 → (𝐹:𝐴–1-1→𝐵 → ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 )))) |
17 | 16 | com23 86 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐴–1-1→𝐵 → (𝑋 ∈ 𝐴 → ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 )))) |
18 | 17 | 3imp 1111 | . 2 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 → 𝑋 = 0 )) |
19 | fveq2 6888 | . . . 4 ⊢ (𝑋 = 0 → (𝐹‘𝑋) = (𝐹‘ 0 )) | |
20 | 5, 6 | ghmid 19092 | . . . . . 6 ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹‘ 0 ) = 𝑁) |
21 | 1, 20 | syl 17 | . . . . 5 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘ 0 ) = 𝑁) |
22 | 21 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐹‘ 0 ) = 𝑁) |
23 | 19, 22 | sylan9eqr 2794 | . . 3 ⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑋 = 0 ) → (𝐹‘𝑋) = 𝑁) |
24 | 23 | ex 413 | . 2 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → (𝑋 = 0 → (𝐹‘𝑋) = 𝑁)) |
25 | 18, 24 | impbid 211 | 1 ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 –1-1→wf1 6537 ‘cfv 6540 (class class class)co 7405 Basecbs 17140 0gc0g 17381 GrpHom cghm 19083 RingHom crh 20240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-grp 18818 df-minusg 18819 df-sbg 18820 df-ghm 19084 df-mgp 19982 df-ur 19999 df-ring 20051 df-rnghom 20243 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |