MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1rhm0to0ALT Structured version   Visualization version   GIF version

Theorem f1rhm0to0ALT 20176
Description: Alternate proof for f1ghm0to0 20175. Using ghmf1 19038 does not make the proof shorter and requires disjoint variable restrictions! (Contributed by AV, 24-Oct-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
gim0to0ALT.a 𝐴 = (Base‘𝑅)
gim0to0ALT.b 𝐵 = (Base‘𝑆)
gim0to0ALT.n 𝑁 = (0g𝑆)
gim0to0ALT.0 0 = (0g𝑅)
Assertion
Ref Expression
f1rhm0to0ALT ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → ((𝐹𝑋) = 𝑁𝑋 = 0 ))

Proof of Theorem f1rhm0to0ALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rhmghm 20158 . . . . . . . 8 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
21adantr 482 . . . . . . 7 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑋𝐴) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
3 gim0to0ALT.a . . . . . . . 8 𝐴 = (Base‘𝑅)
4 gim0to0ALT.b . . . . . . . 8 𝐵 = (Base‘𝑆)
5 gim0to0ALT.0 . . . . . . . 8 0 = (0g𝑅)
6 gim0to0ALT.n . . . . . . . 8 𝑁 = (0g𝑆)
73, 4, 5, 6ghmf1 19038 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴1-1𝐵 ↔ ∀𝑥𝐴 ((𝐹𝑥) = 𝑁𝑥 = 0 )))
82, 7syl 17 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑋𝐴) → (𝐹:𝐴1-1𝐵 ↔ ∀𝑥𝐴 ((𝐹𝑥) = 𝑁𝑥 = 0 )))
9 fveq2 6843 . . . . . . . . . 10 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
109eqeq1d 2739 . . . . . . . . 9 (𝑥 = 𝑋 → ((𝐹𝑥) = 𝑁 ↔ (𝐹𝑋) = 𝑁))
11 eqeq1 2741 . . . . . . . . 9 (𝑥 = 𝑋 → (𝑥 = 0𝑋 = 0 ))
1210, 11imbi12d 345 . . . . . . . 8 (𝑥 = 𝑋 → (((𝐹𝑥) = 𝑁𝑥 = 0 ) ↔ ((𝐹𝑋) = 𝑁𝑋 = 0 )))
1312rspcv 3578 . . . . . . 7 (𝑋𝐴 → (∀𝑥𝐴 ((𝐹𝑥) = 𝑁𝑥 = 0 ) → ((𝐹𝑋) = 𝑁𝑋 = 0 )))
1413adantl 483 . . . . . 6 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑋𝐴) → (∀𝑥𝐴 ((𝐹𝑥) = 𝑁𝑥 = 0 ) → ((𝐹𝑋) = 𝑁𝑋 = 0 )))
158, 14sylbid 239 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝑋𝐴) → (𝐹:𝐴1-1𝐵 → ((𝐹𝑋) = 𝑁𝑋 = 0 )))
1615ex 414 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑋𝐴 → (𝐹:𝐴1-1𝐵 → ((𝐹𝑋) = 𝑁𝑋 = 0 ))))
1716com23 86 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐴1-1𝐵 → (𝑋𝐴 → ((𝐹𝑋) = 𝑁𝑋 = 0 ))))
18173imp 1112 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → ((𝐹𝑋) = 𝑁𝑋 = 0 ))
19 fveq2 6843 . . . 4 (𝑋 = 0 → (𝐹𝑋) = (𝐹0 ))
205, 6ghmid 19015 . . . . . 6 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹0 ) = 𝑁)
211, 20syl 17 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹0 ) = 𝑁)
22213ad2ant1 1134 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → (𝐹0 ) = 𝑁)
2319, 22sylan9eqr 2799 . . 3 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) ∧ 𝑋 = 0 ) → (𝐹𝑋) = 𝑁)
2423ex 414 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → (𝑋 = 0 → (𝐹𝑋) = 𝑁))
2518, 24impbid 211 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑋𝐴) → ((𝐹𝑋) = 𝑁𝑋 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3065  1-1wf1 6494  cfv 6497  (class class class)co 7358  Basecbs 17084  0gc0g 17322   GrpHom cghm 19006   RingHom crh 20144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3354  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-1st 7922  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8649  df-map 8768  df-en 8885  df-dom 8886  df-sdom 8887  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-nn 12155  df-2 12217  df-sets 17037  df-slot 17055  df-ndx 17067  df-base 17085  df-plusg 17147  df-0g 17324  df-mgm 18498  df-sgrp 18547  df-mnd 18558  df-mhm 18602  df-grp 18752  df-minusg 18753  df-sbg 18754  df-ghm 19007  df-mgp 19898  df-ur 19915  df-ring 19967  df-rnghom 20147
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator