MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmghm Structured version   Visualization version   GIF version

Theorem rhmghm 20158
Description: A ring homomorphism is an additive group homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
rhmghm (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))

Proof of Theorem rhmghm
StepHypRef Expression
1 eqid 2737 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 eqid 2737 . . . 4 (mulGrp‘𝑆) = (mulGrp‘𝑆)
31, 2isrhm 20153 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))))
43simprbi 498 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))
54simpld 496 1 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2107  cfv 6497  (class class class)co 7358   MndHom cmhm 18600   GrpHom cghm 19006  mulGrpcmgp 19897  Ringcrg 19965   RingHom crh 20144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11108  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8649  df-map 8768  df-en 8885  df-dom 8886  df-sdom 8887  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389  df-nn 12155  df-2 12217  df-sets 17037  df-slot 17055  df-ndx 17067  df-base 17085  df-plusg 17147  df-0g 17324  df-mhm 18602  df-ghm 19007  df-mgp 19898  df-ur 19915  df-ring 19967  df-rnghom 20147
This theorem is referenced by:  rhmf  20159  rhmf1o  20165  rimgim  20171  rhmco  20172  pwsco2rhm  20174  f1rhm0to0ALT  20176  rhmopp  20183  resrhm  20254  rhmeql  20255  rhmima  20256  srngadd  20319  srng0  20322  mulgrhm2  20902  zrh0  20917  chrrhm  20937  zndvds0  20960  zzngim  20962  cygznlem3  20979  zrhpsgnodpm  20999  mplind  21481  evlslem3  21493  evlslem6  21494  evlslem1  21495  evlsgsumadd  21504  mpfind  21520  evls1gsumadd  21693  evl1addd  21710  evl1subd  21711  ply1rem  25531  plypf1  25576  fermltlchr  32157  znfermltl  32158  rhmpreimaidl  32203  rhmimaidl  32209  zrhf1ker  32559  qqhghm  32572  qqhrhm  32573  fldhmf1  40550  imadrhmcl  40719  ricdrng1  40720  rhmcomulmpl  40743  rhmmpl  40744  evlsaddval  40753  evladdval  40756  selvcllem4  40762  selvadd  40766  selvmul  40767  nrhmzr  46178
  Copyright terms: Public domain W3C validator