![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rhmghm | Structured version Visualization version GIF version |
Description: A ring homomorphism is an additive group homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
rhmghm | ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | eqid 2733 | . . . 4 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
3 | 1, 2 | isrhm 20257 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))) |
4 | 3 | simprbi 498 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) |
5 | 4 | simpld 496 | 1 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ‘cfv 6544 (class class class)co 7409 MndHom cmhm 18669 GrpHom cghm 19089 mulGrpcmgp 19987 Ringcrg 20056 RingHom crh 20248 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-plusg 17210 df-0g 17387 df-mhm 18671 df-ghm 19090 df-mgp 19988 df-ur 20005 df-ring 20058 df-rnghom 20251 |
This theorem is referenced by: rhmf 20263 rhmf1o 20269 rimgim 20275 rhmco 20276 pwsco2rhm 20278 f1rhm0to0ALT 20280 rhmopp 20288 resrhm 20348 rhmeql 20350 rhmima 20351 imadrhmcl 20413 srngadd 20465 srng0 20468 mulgrhm2 21048 zrh0 21063 chrrhm 21083 zndvds0 21106 zzngim 21108 cygznlem3 21125 zrhpsgnodpm 21145 mplind 21631 evlslem3 21643 evlslem6 21644 evlslem1 21645 evlsgsumadd 21654 mpfind 21670 evls1gsumadd 21843 evl1addd 21860 evl1subd 21861 ply1rem 25681 plypf1 25726 fermltlchr 32478 znfermltl 32479 rhmpreimaidl 32537 rhmquskerlem 32543 rhmqusker 32544 rhmimaidl 32550 evls1maplmhm 32760 algextdeglem1 32772 zrhf1ker 32955 qqhghm 32968 qqhrhm 32969 fldhmf1 40955 ricdrng1 41102 rhmcomulmpl 41124 rhmmpl 41125 evlsaddval 41140 evladdval 41147 selvcllem4 41153 selvvvval 41157 selvadd 41160 selvmul 41161 nrhmzr 46647 rhmimasubrng 46745 |
Copyright terms: Public domain | W3C validator |