| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rhmghm | Structured version Visualization version GIF version | ||
| Description: A ring homomorphism is an additive group homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| rhmghm | ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | eqid 2730 | . . . 4 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
| 3 | 1, 2 | isrhm 20394 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) |
| 5 | 4 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 MndHom cmhm 18715 GrpHom cghm 19151 mulGrpcmgp 20056 Ringcrg 20149 RingHom crh 20385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-0g 17411 df-mhm 18717 df-ghm 19152 df-mgp 20057 df-ur 20098 df-ring 20151 df-rhm 20388 |
| This theorem is referenced by: rhmf 20401 rhmf1o 20407 rimgim 20413 rhmco 20417 pwsco2rhm 20419 rhmopp 20425 nrhmzr 20453 rhmimasubrng 20482 resrhm 20517 rhmeql 20519 rhmima 20520 imadrhmcl 20713 srngadd 20767 srng0 20770 rhmpreimaidl 21194 rhmqusnsg 21202 mulgrhm2 21395 zrh0 21430 fermltlchr 21446 chrrhm 21448 zndvds0 21467 zzngim 21469 cygznlem3 21486 zrhpsgnodpm 21508 mplind 21984 evlslem3 21994 evlslem6 21995 evlslem1 21996 evlsgsumadd 22005 mpfind 22021 evls1gsumadd 22218 evl1addd 22235 evl1subd 22236 evls1maplmhm 22271 rhmcomulmpl 22276 rhmmpl 22277 rhmply1vr1 22281 rhmply1vsca 22282 ply1rem 26078 plypf1 26124 znfermltl 33344 rhmquskerlem 33403 rhmqusker 33404 rhmimaidl 33410 algextdeglem4 33717 zrhf1ker 33970 zrhneg 33975 zrhcntr 33976 qqhghm 33985 qqhrhm 33986 rhmzrhval 41966 fldhmf1 42085 aks6d1c1p2 42104 aks6d1c1p3 42105 aks6d1c5lem1 42131 aks6d1c5lem2 42133 rhmqusspan 42180 aks5lem2 42182 aks5lem3a 42184 ricdrng1 42523 rhmcomulpsr 42546 rhmpsr 42547 evlsaddval 42563 evladdval 42570 selvcllem4 42576 selvvvval 42580 selvadd 42583 selvmul 42584 |
| Copyright terms: Public domain | W3C validator |