![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rhmghm | Structured version Visualization version GIF version |
Description: A ring homomorphism is an additive group homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
rhmghm | ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | eqid 2734 | . . . 4 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
3 | 1, 2 | isrhm 20494 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))) |
4 | 3 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) |
5 | 4 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ‘cfv 6562 (class class class)co 7430 MndHom cmhm 18806 GrpHom cghm 19242 mulGrpcmgp 20151 Ringcrg 20250 RingHom crh 20485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-plusg 17310 df-0g 17487 df-mhm 18808 df-ghm 19243 df-mgp 20152 df-ur 20199 df-ring 20252 df-rhm 20488 |
This theorem is referenced by: rhmf 20501 rhmf1o 20507 rimgim 20513 rhmco 20517 pwsco2rhm 20519 rhmopp 20525 nrhmzr 20553 rhmimasubrng 20582 resrhm 20617 rhmeql 20619 rhmima 20620 imadrhmcl 20814 srngadd 20868 srng0 20871 rhmpreimaidl 21304 rhmqusnsg 21312 mulgrhm2 21506 zrh0 21541 fermltlchr 21561 chrrhm 21563 zndvds0 21586 zzngim 21588 cygznlem3 21605 zrhpsgnodpm 21627 mplind 22111 evlslem3 22121 evlslem6 22122 evlslem1 22123 evlsgsumadd 22132 mpfind 22148 evls1gsumadd 22343 evl1addd 22360 evl1subd 22361 evls1maplmhm 22396 rhmcomulmpl 22401 rhmmpl 22402 rhmply1vr1 22406 rhmply1vsca 22407 ply1rem 26219 plypf1 26265 znfermltl 33373 rhmquskerlem 33432 rhmqusker 33433 rhmimaidl 33439 algextdeglem4 33725 zrhf1ker 33935 zrhneg 33940 zrhcntr 33941 qqhghm 33950 qqhrhm 33951 rhmzrhval 41951 fldhmf1 42071 aks6d1c1p2 42090 aks6d1c1p3 42091 aks6d1c5lem1 42117 aks6d1c5lem2 42119 rhmqusspan 42166 aks5lem2 42168 aks5lem3a 42170 ricdrng1 42514 rhmcomulpsr 42537 rhmpsr 42538 evlsaddval 42554 evladdval 42561 selvcllem4 42567 selvvvval 42571 selvadd 42574 selvmul 42575 |
Copyright terms: Public domain | W3C validator |