Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rhmghm | Structured version Visualization version GIF version |
Description: A ring homomorphism is an additive group homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
Ref | Expression |
---|---|
rhmghm | ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | eqid 2737 | . . . 4 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
3 | 1, 2 | isrhm 19741 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))) |
4 | 3 | simprbi 500 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) |
5 | 4 | simpld 498 | 1 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 MndHom cmhm 18216 GrpHom cghm 18619 mulGrpcmgp 19504 Ringcrg 19562 RingHom crh 19732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-plusg 16815 df-0g 16946 df-mhm 18218 df-ghm 18620 df-mgp 19505 df-ur 19517 df-ring 19564 df-rnghom 19735 |
This theorem is referenced by: rhmf 19746 rhmf1o 19752 rimgim 19756 rhmco 19757 pwsco2rhm 19759 f1rhm0to0ALT 19761 resrhm 19829 rhmeql 19830 rhmima 19831 srngadd 19893 srng0 19896 mulgrhm2 20465 zrh0 20480 chrrhm 20496 zndvds0 20515 zzngim 20517 cygznlem3 20534 zrhpsgnodpm 20554 mplind 21028 evlslem3 21040 evlslem6 21041 evlslem1 21042 evlsgsumadd 21051 mpfind 21067 evls1gsumadd 21240 evl1addd 21257 evl1subd 21258 ply1rem 25061 plypf1 25106 rhmopp 31237 znfermltl 31276 rhmpreimaidl 31317 rhmimaidl 31323 zrhf1ker 31637 qqhghm 31650 qqhrhm 31651 evlsaddval 39987 nrhmzr 45104 |
Copyright terms: Public domain | W3C validator |