| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rhmghm | Structured version Visualization version GIF version | ||
| Description: A ring homomorphism is an additive group homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| rhmghm | ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | eqid 2729 | . . . 4 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
| 3 | 1, 2 | isrhm 20399 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) |
| 5 | 4 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 MndHom cmhm 18691 GrpHom cghm 19127 mulGrpcmgp 20061 Ringcrg 20154 RingHom crh 20390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-2 12227 df-sets 17111 df-slot 17129 df-ndx 17141 df-base 17157 df-plusg 17210 df-0g 17381 df-mhm 18693 df-ghm 19128 df-mgp 20062 df-ur 20103 df-ring 20156 df-rhm 20393 |
| This theorem is referenced by: rhmf 20406 rhmf1o 20412 rimgim 20418 rhmco 20422 pwsco2rhm 20424 rhmopp 20430 nrhmzr 20458 rhmimasubrng 20487 resrhm 20522 rhmeql 20524 rhmima 20525 imadrhmcl 20718 srngadd 20772 srng0 20775 rhmpreimaidl 21220 rhmqusnsg 21228 mulgrhm2 21421 zrh0 21456 fermltlchr 21472 chrrhm 21474 zndvds0 21493 zzngim 21495 cygznlem3 21512 zrhpsgnodpm 21535 mplind 22011 evlslem3 22021 evlslem6 22022 evlslem1 22023 evlsgsumadd 22032 mpfind 22048 evls1gsumadd 22245 evl1addd 22262 evl1subd 22263 evls1maplmhm 22298 rhmcomulmpl 22303 rhmmpl 22304 rhmply1vr1 22308 rhmply1vsca 22309 ply1rem 26105 plypf1 26151 znfermltl 33331 rhmquskerlem 33390 rhmqusker 33391 rhmimaidl 33397 algextdeglem4 33704 zrhf1ker 33957 zrhneg 33962 zrhcntr 33963 qqhghm 33972 qqhrhm 33973 rhmzrhval 41953 fldhmf1 42072 aks6d1c1p2 42091 aks6d1c1p3 42092 aks6d1c5lem1 42118 aks6d1c5lem2 42120 rhmqusspan 42167 aks5lem2 42169 aks5lem3a 42171 ricdrng1 42510 rhmcomulpsr 42533 rhmpsr 42534 evlsaddval 42550 evladdval 42557 selvcllem4 42563 selvvvval 42567 selvadd 42570 selvmul 42571 |
| Copyright terms: Public domain | W3C validator |