| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rhmghm | Structured version Visualization version GIF version | ||
| Description: A ring homomorphism is an additive group homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| rhmghm | ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | eqid 2734 | . . . 4 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
| 3 | 1, 2 | isrhm 20447 | . . 3 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) |
| 5 | 4 | simpld 494 | 1 ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 MndHom cmhm 18764 GrpHom cghm 19200 mulGrpcmgp 20106 Ringcrg 20199 RingHom crh 20438 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-plusg 17287 df-0g 17458 df-mhm 18766 df-ghm 19201 df-mgp 20107 df-ur 20148 df-ring 20201 df-rhm 20441 |
| This theorem is referenced by: rhmf 20454 rhmf1o 20460 rimgim 20466 rhmco 20470 pwsco2rhm 20472 rhmopp 20478 nrhmzr 20506 rhmimasubrng 20535 resrhm 20570 rhmeql 20572 rhmima 20573 imadrhmcl 20767 srngadd 20821 srng0 20824 rhmpreimaidl 21250 rhmqusnsg 21258 mulgrhm2 21452 zrh0 21487 fermltlchr 21503 chrrhm 21505 zndvds0 21524 zzngim 21526 cygznlem3 21543 zrhpsgnodpm 21565 mplind 22043 evlslem3 22053 evlslem6 22054 evlslem1 22055 evlsgsumadd 22064 mpfind 22080 evls1gsumadd 22277 evl1addd 22294 evl1subd 22295 evls1maplmhm 22330 rhmcomulmpl 22335 rhmmpl 22336 rhmply1vr1 22340 rhmply1vsca 22341 ply1rem 26142 plypf1 26188 znfermltl 33334 rhmquskerlem 33393 rhmqusker 33394 rhmimaidl 33400 algextdeglem4 33705 zrhf1ker 33949 zrhneg 33954 zrhcntr 33955 qqhghm 33964 qqhrhm 33965 rhmzrhval 41946 fldhmf1 42066 aks6d1c1p2 42085 aks6d1c1p3 42086 aks6d1c5lem1 42112 aks6d1c5lem2 42114 rhmqusspan 42161 aks5lem2 42163 aks5lem3a 42165 ricdrng1 42517 rhmcomulpsr 42540 rhmpsr 42541 evlsaddval 42557 evladdval 42564 selvcllem4 42570 selvvvval 42574 selvadd 42577 selvmul 42578 |
| Copyright terms: Public domain | W3C validator |