MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmghm Structured version   Visualization version   GIF version

Theorem rhmghm 20384
Description: A ring homomorphism is an additive group homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
rhmghm (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))

Proof of Theorem rhmghm
StepHypRef Expression
1 eqid 2726 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 eqid 2726 . . . 4 (mulGrp‘𝑆) = (mulGrp‘𝑆)
31, 2isrhm 20378 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))))
43simprbi 496 . 2 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))))
54simpld 494 1 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2098  cfv 6536  (class class class)co 7404   MndHom cmhm 18709   GrpHom cghm 19136  mulGrpcmgp 20037  Ringcrg 20136   RingHom crh 20369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-plusg 17217  df-0g 17394  df-mhm 18711  df-ghm 19137  df-mgp 20038  df-ur 20085  df-ring 20138  df-rhm 20372
This theorem is referenced by:  rhmf  20385  rhmf1o  20391  rimgim  20397  rhmco  20401  pwsco2rhm  20403  rhmopp  20409  nrhmzr  20435  rhmimasubrng  20464  resrhm  20501  rhmeql  20503  rhmima  20504  imadrhmcl  20646  srngadd  20698  srng0  20701  mulgrhm2  21361  zrh0  21396  fermltlchr  21416  chrrhm  21418  zndvds0  21441  zzngim  21443  cygznlem3  21460  zrhpsgnodpm  21481  mplind  21969  evlslem3  21981  evlslem6  21982  evlslem1  21983  evlsgsumadd  21992  mpfind  22008  evls1gsumadd  22194  evl1addd  22211  evl1subd  22212  ply1rem  26051  plypf1  26097  znfermltl  32985  rhmpreimaidl  33043  rhmquskerlem  33049  rhmqusker  33050  rhmimaidl  33056  evls1maplmhm  33279  algextdeglem4  33297  zrhf1ker  33485  qqhghm  33498  qqhrhm  33499  fldhmf1  41469  aks6d1c1p2  41484  aks6d1c1p3  41485  ricdrng1  41642  rhmcomulmpl  41662  rhmmpl  41663  evlsaddval  41678  evladdval  41685  selvcllem4  41691  selvvvval  41695  selvadd  41698  selvmul  41699
  Copyright terms: Public domain W3C validator