Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fargshiftf Structured version   Visualization version   GIF version

Theorem fargshiftf 43957
Description: If a class is a function, then also its "shifted function" is a function. (Contributed by Alexander van der Vekens, 23-Nov-2017.)
Hypothesis
Ref Expression
fargshift.g 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
Assertion
Ref Expression
fargshiftf ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐸
Allowed substitution hints:   𝐺(𝑥)   𝑁(𝑥)

Proof of Theorem fargshiftf
StepHypRef Expression
1 ffn 6487 . . . 4 (𝐹:(1...𝑁)⟶dom 𝐸𝐹 Fn (1...𝑁))
2 fseq1hash 13733 . . . 4 ((𝑁 ∈ ℕ0𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁)
31, 2sylan2 595 . . 3 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (♯‘𝐹) = 𝑁)
4 eleq1 2877 . . . . . 6 (𝑁 = (♯‘𝐹) → (𝑁 ∈ ℕ0 ↔ (♯‘𝐹) ∈ ℕ0))
5 oveq2 7143 . . . . . . 7 (𝑁 = (♯‘𝐹) → (1...𝑁) = (1...(♯‘𝐹)))
65feq2d 6473 . . . . . 6 (𝑁 = (♯‘𝐹) → (𝐹:(1...𝑁)⟶dom 𝐸𝐹:(1...(♯‘𝐹))⟶dom 𝐸))
74, 6anbi12d 633 . . . . 5 (𝑁 = (♯‘𝐹) → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) ↔ ((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))⟶dom 𝐸)))
87eqcoms 2806 . . . 4 ((♯‘𝐹) = 𝑁 → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) ↔ ((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))⟶dom 𝐸)))
9 fz0add1fz1 13102 . . . . . . 7 (((♯‘𝐹) ∈ ℕ0𝑥 ∈ (0..^(♯‘𝐹))) → (𝑥 + 1) ∈ (1...(♯‘𝐹)))
10 ffvelrn 6826 . . . . . . . 8 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ (𝑥 + 1) ∈ (1...(♯‘𝐹))) → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸)
1110expcom 417 . . . . . . 7 ((𝑥 + 1) ∈ (1...(♯‘𝐹)) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸))
129, 11syl 17 . . . . . 6 (((♯‘𝐹) ∈ ℕ0𝑥 ∈ (0..^(♯‘𝐹))) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸))
1312impancom 455 . . . . 5 (((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → (𝑥 ∈ (0..^(♯‘𝐹)) → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸))
1413ralrimiv 3148 . . . 4 (((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸)
158, 14syl6bi 256 . . 3 ((♯‘𝐹) = 𝑁 → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸))
163, 15mpcom 38 . 2 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸)
17 fargshift.g . . 3 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
1817fmpt 6851 . 2 (∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
1916, 18sylib 221 1 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  cmpt 5110  dom cdm 5519   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   + caddc 10529  0cn0 11885  ...cfz 12885  ..^cfzo 13028  chash 13686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687
This theorem is referenced by:  fargshiftf1  43958  fargshiftfo  43959
  Copyright terms: Public domain W3C validator