Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fargshiftf | Structured version Visualization version GIF version |
Description: If a class is a function, then also its "shifted function" is a function. (Contributed by Alexander van der Vekens, 23-Nov-2017.) |
Ref | Expression |
---|---|
fargshift.g | ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) |
Ref | Expression |
---|---|
fargshiftf | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6593 | . . . 4 ⊢ (𝐹:(1...𝑁)⟶dom 𝐸 → 𝐹 Fn (1...𝑁)) | |
2 | fseq1hash 14079 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁) | |
3 | 1, 2 | sylan2 593 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (♯‘𝐹) = 𝑁) |
4 | eleq1 2826 | . . . . . 6 ⊢ (𝑁 = (♯‘𝐹) → (𝑁 ∈ ℕ0 ↔ (♯‘𝐹) ∈ ℕ0)) | |
5 | oveq2 7276 | . . . . . . 7 ⊢ (𝑁 = (♯‘𝐹) → (1...𝑁) = (1...(♯‘𝐹))) | |
6 | 5 | feq2d 6579 | . . . . . 6 ⊢ (𝑁 = (♯‘𝐹) → (𝐹:(1...𝑁)⟶dom 𝐸 ↔ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸)) |
7 | 4, 6 | anbi12d 631 | . . . . 5 ⊢ (𝑁 = (♯‘𝐹) → ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ↔ ((♯‘𝐹) ∈ ℕ0 ∧ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸))) |
8 | 7 | eqcoms 2746 | . . . 4 ⊢ ((♯‘𝐹) = 𝑁 → ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ↔ ((♯‘𝐹) ∈ ℕ0 ∧ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸))) |
9 | fz0add1fz1 13445 | . . . . . . 7 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 𝑥 ∈ (0..^(♯‘𝐹))) → (𝑥 + 1) ∈ (1...(♯‘𝐹))) | |
10 | ffvelrn 6952 | . . . . . . . 8 ⊢ ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ (𝑥 + 1) ∈ (1...(♯‘𝐹))) → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸) | |
11 | 10 | expcom 414 | . . . . . . 7 ⊢ ((𝑥 + 1) ∈ (1...(♯‘𝐹)) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸)) |
12 | 9, 11 | syl 17 | . . . . . 6 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 𝑥 ∈ (0..^(♯‘𝐹))) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸)) |
13 | 12 | impancom 452 | . . . . 5 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → (𝑥 ∈ (0..^(♯‘𝐹)) → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸)) |
14 | 13 | ralrimiv 3112 | . . . 4 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸) |
15 | 8, 14 | syl6bi 252 | . . 3 ⊢ ((♯‘𝐹) = 𝑁 → ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸)) |
16 | 3, 15 | mpcom 38 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸) |
17 | fargshift.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) | |
18 | 17 | fmpt 6977 | . 2 ⊢ (∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸 ↔ 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸) |
19 | 16, 18 | sylib 217 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ↦ cmpt 5157 dom cdm 5585 Fn wfn 6422 ⟶wf 6423 ‘cfv 6427 (class class class)co 7268 0cc0 10859 1c1 10860 + caddc 10862 ℕ0cn0 12221 ...cfz 13227 ..^cfzo 13370 ♯chash 14032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-int 4881 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-1st 7821 df-2nd 7822 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-1o 8285 df-er 8486 df-en 8722 df-dom 8723 df-sdom 8724 df-fin 8725 df-card 9685 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-nn 11962 df-n0 12222 df-z 12308 df-uz 12571 df-fz 13228 df-fzo 13371 df-hash 14033 |
This theorem is referenced by: fargshiftf1 44849 fargshiftfo 44850 |
Copyright terms: Public domain | W3C validator |