| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fargshiftf | Structured version Visualization version GIF version | ||
| Description: If a class is a function, then also its "shifted function" is a function. (Contributed by Alexander van der Vekens, 23-Nov-2017.) |
| Ref | Expression |
|---|---|
| fargshift.g | ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) |
| Ref | Expression |
|---|---|
| fargshiftf | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6688 | . . . 4 ⊢ (𝐹:(1...𝑁)⟶dom 𝐸 → 𝐹 Fn (1...𝑁)) | |
| 2 | fseq1hash 14341 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁) | |
| 3 | 1, 2 | sylan2 593 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (♯‘𝐹) = 𝑁) |
| 4 | eleq1 2816 | . . . . . 6 ⊢ (𝑁 = (♯‘𝐹) → (𝑁 ∈ ℕ0 ↔ (♯‘𝐹) ∈ ℕ0)) | |
| 5 | oveq2 7395 | . . . . . . 7 ⊢ (𝑁 = (♯‘𝐹) → (1...𝑁) = (1...(♯‘𝐹))) | |
| 6 | 5 | feq2d 6672 | . . . . . 6 ⊢ (𝑁 = (♯‘𝐹) → (𝐹:(1...𝑁)⟶dom 𝐸 ↔ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸)) |
| 7 | 4, 6 | anbi12d 632 | . . . . 5 ⊢ (𝑁 = (♯‘𝐹) → ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ↔ ((♯‘𝐹) ∈ ℕ0 ∧ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸))) |
| 8 | 7 | eqcoms 2737 | . . . 4 ⊢ ((♯‘𝐹) = 𝑁 → ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ↔ ((♯‘𝐹) ∈ ℕ0 ∧ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸))) |
| 9 | fz0add1fz1 13696 | . . . . . . 7 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 𝑥 ∈ (0..^(♯‘𝐹))) → (𝑥 + 1) ∈ (1...(♯‘𝐹))) | |
| 10 | ffvelcdm 7053 | . . . . . . . 8 ⊢ ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ (𝑥 + 1) ∈ (1...(♯‘𝐹))) → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸) | |
| 11 | 10 | expcom 413 | . . . . . . 7 ⊢ ((𝑥 + 1) ∈ (1...(♯‘𝐹)) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸)) |
| 12 | 9, 11 | syl 17 | . . . . . 6 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 𝑥 ∈ (0..^(♯‘𝐹))) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸)) |
| 13 | 12 | impancom 451 | . . . . 5 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → (𝑥 ∈ (0..^(♯‘𝐹)) → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸)) |
| 14 | 13 | ralrimiv 3124 | . . . 4 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸) |
| 15 | 8, 14 | biimtrdi 253 | . . 3 ⊢ ((♯‘𝐹) = 𝑁 → ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸)) |
| 16 | 3, 15 | mpcom 38 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸) |
| 17 | fargshift.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) | |
| 18 | 17 | fmpt 7082 | . 2 ⊢ (∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸 ↔ 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸) |
| 19 | 16, 18 | sylib 218 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ↦ cmpt 5188 dom cdm 5638 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 ℕ0cn0 12442 ...cfz 13468 ..^cfzo 13615 ♯chash 14295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 |
| This theorem is referenced by: fargshiftf1 47442 fargshiftfo 47443 |
| Copyright terms: Public domain | W3C validator |