| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fargshiftf | Structured version Visualization version GIF version | ||
| Description: If a class is a function, then also its "shifted function" is a function. (Contributed by Alexander van der Vekens, 23-Nov-2017.) |
| Ref | Expression |
|---|---|
| fargshift.g | ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) |
| Ref | Expression |
|---|---|
| fargshiftf | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn 6657 | . . . 4 ⊢ (𝐹:(1...𝑁)⟶dom 𝐸 → 𝐹 Fn (1...𝑁)) | |
| 2 | fseq1hash 14289 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁) | |
| 3 | 1, 2 | sylan2 593 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (♯‘𝐹) = 𝑁) |
| 4 | eleq1 2819 | . . . . . 6 ⊢ (𝑁 = (♯‘𝐹) → (𝑁 ∈ ℕ0 ↔ (♯‘𝐹) ∈ ℕ0)) | |
| 5 | oveq2 7360 | . . . . . . 7 ⊢ (𝑁 = (♯‘𝐹) → (1...𝑁) = (1...(♯‘𝐹))) | |
| 6 | 5 | feq2d 6641 | . . . . . 6 ⊢ (𝑁 = (♯‘𝐹) → (𝐹:(1...𝑁)⟶dom 𝐸 ↔ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸)) |
| 7 | 4, 6 | anbi12d 632 | . . . . 5 ⊢ (𝑁 = (♯‘𝐹) → ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ↔ ((♯‘𝐹) ∈ ℕ0 ∧ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸))) |
| 8 | 7 | eqcoms 2739 | . . . 4 ⊢ ((♯‘𝐹) = 𝑁 → ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ↔ ((♯‘𝐹) ∈ ℕ0 ∧ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸))) |
| 9 | fz0add1fz1 13641 | . . . . . . 7 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 𝑥 ∈ (0..^(♯‘𝐹))) → (𝑥 + 1) ∈ (1...(♯‘𝐹))) | |
| 10 | ffvelcdm 7020 | . . . . . . . 8 ⊢ ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ (𝑥 + 1) ∈ (1...(♯‘𝐹))) → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸) | |
| 11 | 10 | expcom 413 | . . . . . . 7 ⊢ ((𝑥 + 1) ∈ (1...(♯‘𝐹)) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸)) |
| 12 | 9, 11 | syl 17 | . . . . . 6 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 𝑥 ∈ (0..^(♯‘𝐹))) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸)) |
| 13 | 12 | impancom 451 | . . . . 5 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → (𝑥 ∈ (0..^(♯‘𝐹)) → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸)) |
| 14 | 13 | ralrimiv 3123 | . . . 4 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸) |
| 15 | 8, 14 | biimtrdi 253 | . . 3 ⊢ ((♯‘𝐹) = 𝑁 → ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸)) |
| 16 | 3, 15 | mpcom 38 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸) |
| 17 | fargshift.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) | |
| 18 | 17 | fmpt 7049 | . 2 ⊢ (∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸 ↔ 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸) |
| 19 | 16, 18 | sylib 218 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ↦ cmpt 5174 dom cdm 5619 Fn wfn 6482 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 0cc0 11012 1c1 11013 + caddc 11015 ℕ0cn0 12387 ...cfz 13413 ..^cfzo 13560 ♯chash 14243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-n0 12388 df-z 12475 df-uz 12739 df-fz 13414 df-fzo 13561 df-hash 14244 |
| This theorem is referenced by: fargshiftf1 47546 fargshiftfo 47547 |
| Copyright terms: Public domain | W3C validator |