![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fargshiftf | Structured version Visualization version GIF version |
Description: If a class is a function, then also its "shifted function" is a function. (Contributed by Alexander van der Vekens, 23-Nov-2017.) |
Ref | Expression |
---|---|
fargshift.g | ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) |
Ref | Expression |
---|---|
fargshiftf | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffn 6711 | . . . 4 ⊢ (𝐹:(1...𝑁)⟶dom 𝐸 → 𝐹 Fn (1...𝑁)) | |
2 | fseq1hash 14341 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁) | |
3 | 1, 2 | sylan2 592 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (♯‘𝐹) = 𝑁) |
4 | eleq1 2815 | . . . . . 6 ⊢ (𝑁 = (♯‘𝐹) → (𝑁 ∈ ℕ0 ↔ (♯‘𝐹) ∈ ℕ0)) | |
5 | oveq2 7413 | . . . . . . 7 ⊢ (𝑁 = (♯‘𝐹) → (1...𝑁) = (1...(♯‘𝐹))) | |
6 | 5 | feq2d 6697 | . . . . . 6 ⊢ (𝑁 = (♯‘𝐹) → (𝐹:(1...𝑁)⟶dom 𝐸 ↔ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸)) |
7 | 4, 6 | anbi12d 630 | . . . . 5 ⊢ (𝑁 = (♯‘𝐹) → ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ↔ ((♯‘𝐹) ∈ ℕ0 ∧ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸))) |
8 | 7 | eqcoms 2734 | . . . 4 ⊢ ((♯‘𝐹) = 𝑁 → ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) ↔ ((♯‘𝐹) ∈ ℕ0 ∧ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸))) |
9 | fz0add1fz1 13708 | . . . . . . 7 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 𝑥 ∈ (0..^(♯‘𝐹))) → (𝑥 + 1) ∈ (1...(♯‘𝐹))) | |
10 | ffvelcdm 7077 | . . . . . . . 8 ⊢ ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ (𝑥 + 1) ∈ (1...(♯‘𝐹))) → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸) | |
11 | 10 | expcom 413 | . . . . . . 7 ⊢ ((𝑥 + 1) ∈ (1...(♯‘𝐹)) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸)) |
12 | 9, 11 | syl 17 | . . . . . 6 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 𝑥 ∈ (0..^(♯‘𝐹))) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸)) |
13 | 12 | impancom 451 | . . . . 5 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → (𝑥 ∈ (0..^(♯‘𝐹)) → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸)) |
14 | 13 | ralrimiv 3139 | . . . 4 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸) |
15 | 8, 14 | syl6bi 253 | . . 3 ⊢ ((♯‘𝐹) = 𝑁 → ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸)) |
16 | 3, 15 | mpcom 38 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸) |
17 | fargshift.g | . . 3 ⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) | |
18 | 17 | fmpt 7105 | . 2 ⊢ (∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸 ↔ 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸) |
19 | 16, 18 | sylib 217 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ↦ cmpt 5224 dom cdm 5669 Fn wfn 6532 ⟶wf 6533 ‘cfv 6537 (class class class)co 7405 0cc0 11112 1c1 11113 + caddc 11115 ℕ0cn0 12476 ...cfz 13490 ..^cfzo 13633 ♯chash 14295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-fzo 13634 df-hash 14296 |
This theorem is referenced by: fargshiftf1 46681 fargshiftfo 46682 |
Copyright terms: Public domain | W3C validator |