Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fargshiftf Structured version   Visualization version   GIF version

Theorem fargshiftf 47450
Description: If a class is a function, then also its "shifted function" is a function. (Contributed by Alexander van der Vekens, 23-Nov-2017.)
Hypothesis
Ref Expression
fargshift.g 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
Assertion
Ref Expression
fargshiftf ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐸
Allowed substitution hints:   𝐺(𝑥)   𝑁(𝑥)

Proof of Theorem fargshiftf
StepHypRef Expression
1 ffn 6647 . . . 4 (𝐹:(1...𝑁)⟶dom 𝐸𝐹 Fn (1...𝑁))
2 fseq1hash 14275 . . . 4 ((𝑁 ∈ ℕ0𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁)
31, 2sylan2 593 . . 3 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (♯‘𝐹) = 𝑁)
4 eleq1 2817 . . . . . 6 (𝑁 = (♯‘𝐹) → (𝑁 ∈ ℕ0 ↔ (♯‘𝐹) ∈ ℕ0))
5 oveq2 7349 . . . . . . 7 (𝑁 = (♯‘𝐹) → (1...𝑁) = (1...(♯‘𝐹)))
65feq2d 6631 . . . . . 6 (𝑁 = (♯‘𝐹) → (𝐹:(1...𝑁)⟶dom 𝐸𝐹:(1...(♯‘𝐹))⟶dom 𝐸))
74, 6anbi12d 632 . . . . 5 (𝑁 = (♯‘𝐹) → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) ↔ ((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))⟶dom 𝐸)))
87eqcoms 2738 . . . 4 ((♯‘𝐹) = 𝑁 → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) ↔ ((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))⟶dom 𝐸)))
9 fz0add1fz1 13627 . . . . . . 7 (((♯‘𝐹) ∈ ℕ0𝑥 ∈ (0..^(♯‘𝐹))) → (𝑥 + 1) ∈ (1...(♯‘𝐹)))
10 ffvelcdm 7009 . . . . . . . 8 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ (𝑥 + 1) ∈ (1...(♯‘𝐹))) → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸)
1110expcom 413 . . . . . . 7 ((𝑥 + 1) ∈ (1...(♯‘𝐹)) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸))
129, 11syl 17 . . . . . 6 (((♯‘𝐹) ∈ ℕ0𝑥 ∈ (0..^(♯‘𝐹))) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸))
1312impancom 451 . . . . 5 (((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → (𝑥 ∈ (0..^(♯‘𝐹)) → (𝐹‘(𝑥 + 1)) ∈ dom 𝐸))
1413ralrimiv 3121 . . . 4 (((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸)
158, 14biimtrdi 253 . . 3 ((♯‘𝐹) = 𝑁 → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸))
163, 15mpcom 38 . 2 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → ∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸)
17 fargshift.g . . 3 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
1817fmpt 7038 . 2 (∀𝑥 ∈ (0..^(♯‘𝐹))(𝐹‘(𝑥 + 1)) ∈ dom 𝐸𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
1916, 18sylib 218 1 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wral 3045  cmpt 5170  dom cdm 5614   Fn wfn 6472  wf 6473  cfv 6477  (class class class)co 7341  0cc0 10998  1c1 10999   + caddc 11001  0cn0 12373  ...cfz 13399  ..^cfzo 13546  chash 14229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725  df-fz 13400  df-fzo 13547  df-hash 14230
This theorem is referenced by:  fargshiftf1  47451  fargshiftfo  47452
  Copyright terms: Public domain W3C validator