| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flmulnn0 | Structured version Visualization version GIF version | ||
| Description: Move a nonnegative integer in and out of a floor. (Contributed by NM, 2-Jan-2009.) (Proof shortened by Fan Zheng, 7-Jun-2016.) |
| Ref | Expression |
|---|---|
| flmulnn0 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reflcl 13837 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℝ) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → (⌊‘𝐴) ∈ ℝ) |
| 3 | simpr 484 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 4 | simpl 482 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → 𝑁 ∈ ℕ0) | |
| 5 | 4 | nn0red 12590 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → 𝑁 ∈ ℝ) |
| 6 | 4 | nn0ge0d 12592 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → 0 ≤ 𝑁) |
| 7 | flle 13840 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → (⌊‘𝐴) ≤ 𝐴) |
| 9 | 2, 3, 5, 6, 8 | lemul2ad 12209 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ≤ (𝑁 · 𝐴)) |
| 10 | 5, 3 | remulcld 11292 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → (𝑁 · 𝐴) ∈ ℝ) |
| 11 | nn0z 12640 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 12 | flcl 13836 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ∈ ℤ) | |
| 13 | zmulcl 12668 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (𝑁 · (⌊‘𝐴)) ∈ ℤ) | |
| 14 | 11, 12, 13 | syl2an 596 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ∈ ℤ) |
| 15 | flge 13846 | . . 3 ⊢ (((𝑁 · 𝐴) ∈ ℝ ∧ (𝑁 · (⌊‘𝐴)) ∈ ℤ) → ((𝑁 · (⌊‘𝐴)) ≤ (𝑁 · 𝐴) ↔ (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))) | |
| 16 | 10, 14, 15 | syl2anc 584 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → ((𝑁 · (⌊‘𝐴)) ≤ (𝑁 · 𝐴) ↔ (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴)))) |
| 17 | 9, 16 | mpbid 232 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℝ) → (𝑁 · (⌊‘𝐴)) ≤ (⌊‘(𝑁 · 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 ℝcr 11155 · cmul 11161 ≤ cle 11297 ℕ0cn0 12528 ℤcz 12615 ⌊cfl 13831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-sup 9483 df-inf 9484 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-n0 12529 df-z 12616 df-uz 12880 df-fl 13833 |
| This theorem is referenced by: modmulnn 13930 |
| Copyright terms: Public domain | W3C validator |