|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > flle | Structured version Visualization version GIF version | ||
| Description: A basic property of the floor (greatest integer) function. (Contributed by NM, 24-Feb-2005.) | 
| Ref | Expression | 
|---|---|
| flle | ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fllelt 13838 | . 2 ⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1))) | |
| 2 | 1 | simpld 494 | 1 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 2107 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 ℝcr 11155 1c1 11157 + caddc 11159 < clt 11296 ≤ cle 11297 ⌊cfl 13831 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-sup 9483 df-inf 9484 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-n0 12529 df-z 12616 df-uz 12880 df-fl 13833 | 
| This theorem is referenced by: fracge0 13845 flge 13846 flflp1 13848 flid 13849 flwordi 13853 flval2 13855 flval3 13856 fladdz 13866 flmulnn0 13868 fldiv4p1lem1div2 13876 fldiv4lem1div2uz2 13877 ceige 13885 flleceil 13894 fleqceilz 13895 quoremz 13896 quoremnn0ALT 13898 facavg 14341 rddif 15380 o1fsum 15850 flo1 15891 bitscmp 16476 isprm7 16746 prmreclem4 16958 zcld 24836 mbfi1fseqlem5 25755 mbfi1fseqlem6 25756 dvfsumlem1 26067 dvfsumlem2 26068 dvfsumlem2OLD 26069 dvfsumlem3 26070 harmonicubnd 27054 harmonicbnd4 27055 ppisval 27148 ppiltx 27221 ppiub 27249 chtub 27257 chpub 27265 logfacubnd 27266 logfaclbnd 27267 bposlem1 27329 bposlem5 27333 bposlem6 27334 lgsquadlem1 27425 chebbnd1lem3 27516 vmadivsum 27527 dchrisumlem1 27534 dchrmusum2 27539 dchrisum0lem2a 27562 mudivsum 27575 mulogsumlem 27576 selberglem2 27591 selberg2lem 27595 pntrlog2bndlem4 27625 pntpbnd2 27632 pntlemg 27643 pntlemr 27647 pntlemk 27651 ostth2lem3 27680 dnibndlem4 36483 dnibndlem10 36489 knoppndvlem19 36532 ltflcei 37616 itg2addnclem3 37681 aks4d1p1p3 42071 aks4d1p1p2 42072 aks6d1c7lem1 42182 irrapxlem1 42838 hashnzfzclim 44346 fourierdlem4 46131 fourierdlem65 46191 fllogbd 48486 logbpw2m1 48493 fllog2 48494 nnpw2blen 48506 dignn0flhalflem2 48542 | 
| Copyright terms: Public domain | W3C validator |