![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flle | Structured version Visualization version GIF version |
Description: A basic property of the floor (greatest integer) function. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
flle | ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fllelt 13848 | . 2 ⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1))) | |
2 | 1 | simpld 494 | 1 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 1c1 11185 + caddc 11187 < clt 11324 ≤ cle 11325 ⌊cfl 13841 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fl 13843 |
This theorem is referenced by: fracge0 13855 flge 13856 flflp1 13858 flid 13859 flwordi 13863 flval2 13865 flval3 13866 fladdz 13876 flmulnn0 13878 fldiv4p1lem1div2 13886 fldiv4lem1div2uz2 13887 ceige 13895 flleceil 13904 fleqceilz 13905 quoremz 13906 quoremnn0ALT 13908 facavg 14350 rddif 15389 o1fsum 15861 flo1 15902 bitscmp 16484 isprm7 16755 prmreclem4 16966 zcld 24854 mbfi1fseqlem5 25774 mbfi1fseqlem6 25775 dvfsumlem1 26086 dvfsumlem2 26087 dvfsumlem2OLD 26088 dvfsumlem3 26089 harmonicubnd 27071 harmonicbnd4 27072 ppisval 27165 ppiltx 27238 ppiub 27266 chtub 27274 chpub 27282 logfacubnd 27283 logfaclbnd 27284 bposlem1 27346 bposlem5 27350 bposlem6 27351 lgsquadlem1 27442 chebbnd1lem3 27533 vmadivsum 27544 dchrisumlem1 27551 dchrmusum2 27556 dchrisum0lem2a 27579 mudivsum 27592 mulogsumlem 27593 selberglem2 27608 selberg2lem 27612 pntrlog2bndlem4 27642 pntpbnd2 27649 pntlemg 27660 pntlemr 27664 pntlemk 27668 ostth2lem3 27697 dnibndlem4 36447 dnibndlem10 36453 knoppndvlem19 36496 ltflcei 37568 itg2addnclem3 37633 aks4d1p1p3 42026 aks4d1p1p2 42027 aks6d1c7lem1 42137 irrapxlem1 42778 hashnzfzclim 44291 fourierdlem4 46032 fourierdlem65 46092 fllogbd 48294 logbpw2m1 48301 fllog2 48302 nnpw2blen 48314 dignn0flhalflem2 48350 |
Copyright terms: Public domain | W3C validator |