Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > flle | Structured version Visualization version GIF version |
Description: A basic property of the floor (greatest integer) function. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
flle | ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fllelt 13563 | . 2 ⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1))) | |
2 | 1 | simpld 496 | 1 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 ℝcr 10916 1c1 10918 + caddc 10920 < clt 11055 ≤ cle 11056 ⌊cfl 13556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9245 df-inf 9246 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-n0 12280 df-z 12366 df-uz 12629 df-fl 13558 |
This theorem is referenced by: fracge0 13570 flge 13571 flflp1 13573 flid 13574 flwordi 13578 flval2 13580 flval3 13581 fladdz 13591 flmulnn0 13593 fldiv4p1lem1div2 13601 fldiv4lem1div2uz2 13602 ceige 13610 flleceil 13619 fleqceilz 13620 quoremz 13621 quoremnn0ALT 13623 facavg 14061 rddif 15097 o1fsum 15570 flo1 15611 bitscmp 16190 isprm7 16458 prmreclem4 16665 zcld 24021 mbfi1fseqlem5 24929 mbfi1fseqlem6 24930 dvfsumlem1 25235 dvfsumlem2 25236 dvfsumlem3 25237 harmonicubnd 26204 harmonicbnd4 26205 ppisval 26298 ppiltx 26371 ppiub 26397 chtub 26405 chpub 26413 logfacubnd 26414 logfaclbnd 26415 bposlem1 26477 bposlem5 26481 bposlem6 26482 lgsquadlem1 26573 chebbnd1lem3 26664 vmadivsum 26675 dchrisumlem1 26682 dchrmusum2 26687 dchrisum0lem2a 26710 mudivsum 26723 mulogsumlem 26724 selberglem2 26739 selberg2lem 26743 pntrlog2bndlem4 26773 pntpbnd2 26780 pntlemg 26791 pntlemr 26795 pntlemk 26799 ostth2lem3 26828 dnibndlem4 34706 dnibndlem10 34712 knoppndvlem19 34755 ltflcei 35809 itg2addnclem3 35874 aks4d1p1p3 40119 aks4d1p1p2 40120 irrapxlem1 40681 hashnzfzclim 41978 fourierdlem4 43701 fourierdlem65 43761 fllogbd 45964 logbpw2m1 45971 fllog2 45972 nnpw2blen 45984 dignn0flhalflem2 46020 |
Copyright terms: Public domain | W3C validator |