| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flle | Structured version Visualization version GIF version | ||
| Description: A basic property of the floor (greatest integer) function. (Contributed by NM, 24-Feb-2005.) |
| Ref | Expression |
|---|---|
| flle | ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fllelt 13703 | . 2 ⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1))) | |
| 2 | 1 | simpld 494 | 1 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 1c1 11014 + caddc 11016 < clt 11153 ≤ cle 11154 ⌊cfl 13696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fl 13698 |
| This theorem is referenced by: fracge0 13710 flge 13711 flflp1 13713 flid 13714 flwordi 13718 flval2 13720 flval3 13721 fladdz 13731 flmulnn0 13733 fldiv4p1lem1div2 13741 fldiv4lem1div2uz2 13742 ceige 13750 flleceil 13759 fleqceilz 13760 quoremz 13761 quoremnn0ALT 13763 facavg 14210 rddif 15250 o1fsum 15722 flo1 15763 bitscmp 16351 isprm7 16621 prmreclem4 16833 zcld 24730 mbfi1fseqlem5 25648 mbfi1fseqlem6 25649 dvfsumlem1 25960 dvfsumlem2 25961 dvfsumlem2OLD 25962 dvfsumlem3 25963 harmonicubnd 26948 harmonicbnd4 26949 ppisval 27042 ppiltx 27115 ppiub 27143 chtub 27151 chpub 27159 logfacubnd 27160 logfaclbnd 27161 bposlem1 27223 bposlem5 27227 bposlem6 27228 lgsquadlem1 27319 chebbnd1lem3 27410 vmadivsum 27421 dchrisumlem1 27428 dchrmusum2 27433 dchrisum0lem2a 27456 mudivsum 27469 mulogsumlem 27470 selberglem2 27485 selberg2lem 27489 pntrlog2bndlem4 27519 pntpbnd2 27526 pntlemg 27537 pntlemr 27541 pntlemk 27545 ostth2lem3 27574 dnibndlem4 36546 dnibndlem10 36552 knoppndvlem19 36595 ltflcei 37668 itg2addnclem3 37733 aks4d1p1p3 42182 aks4d1p1p2 42183 aks6d1c7lem1 42293 irrapxlem1 42939 hashnzfzclim 44439 fourierdlem4 46233 fourierdlem65 46293 fllogbd 48685 logbpw2m1 48692 fllog2 48693 nnpw2blen 48705 dignn0flhalflem2 48741 |
| Copyright terms: Public domain | W3C validator |