Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > flle | Structured version Visualization version GIF version |
Description: A basic property of the floor (greatest integer) function. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
flle | ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fllelt 13498 | . 2 ⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1))) | |
2 | 1 | simpld 494 | 1 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5078 ‘cfv 6430 (class class class)co 7268 ℝcr 10854 1c1 10856 + caddc 10858 < clt 10993 ≤ cle 10994 ⌊cfl 13491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-n0 12217 df-z 12303 df-uz 12565 df-fl 13493 |
This theorem is referenced by: fracge0 13505 flge 13506 flflp1 13508 flid 13509 flwordi 13513 flval2 13515 flval3 13516 fladdz 13526 flmulnn0 13528 fldiv4p1lem1div2 13536 fldiv4lem1div2uz2 13537 ceige 13545 flleceil 13554 fleqceilz 13555 quoremz 13556 quoremnn0ALT 13558 facavg 13996 rddif 15033 o1fsum 15506 flo1 15547 bitscmp 16126 isprm7 16394 prmreclem4 16601 zcld 23957 mbfi1fseqlem5 24865 mbfi1fseqlem6 24866 dvfsumlem1 25171 dvfsumlem2 25172 dvfsumlem3 25173 harmonicubnd 26140 harmonicbnd4 26141 ppisval 26234 ppiltx 26307 ppiub 26333 chtub 26341 chpub 26349 logfacubnd 26350 logfaclbnd 26351 bposlem1 26413 bposlem5 26417 bposlem6 26418 lgsquadlem1 26509 chebbnd1lem3 26600 vmadivsum 26611 dchrisumlem1 26618 dchrmusum2 26623 dchrisum0lem2a 26646 mudivsum 26659 mulogsumlem 26660 selberglem2 26675 selberg2lem 26679 pntrlog2bndlem4 26709 pntpbnd2 26716 pntlemg 26727 pntlemr 26731 pntlemk 26735 ostth2lem3 26764 dnibndlem4 34640 dnibndlem10 34646 knoppndvlem19 34689 ltflcei 35744 itg2addnclem3 35809 aks4d1p1p3 40057 aks4d1p1p2 40058 irrapxlem1 40624 hashnzfzclim 41893 fourierdlem4 43606 fourierdlem65 43666 fllogbd 45858 logbpw2m1 45865 fllog2 45866 nnpw2blen 45878 dignn0flhalflem2 45914 |
Copyright terms: Public domain | W3C validator |