![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flle | Structured version Visualization version GIF version |
Description: A basic property of the floor (greatest integer) function. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
flle | ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fllelt 12981 | . 2 ⊢ (𝐴 ∈ ℝ → ((⌊‘𝐴) ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1))) | |
2 | 1 | simpld 487 | 1 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2051 class class class wbr 4926 ‘cfv 6186 (class class class)co 6975 ℝcr 10333 1c1 10335 + caddc 10337 < clt 10473 ≤ cle 10474 ⌊cfl 12974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 ax-pre-sup 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-er 8088 df-en 8306 df-dom 8307 df-sdom 8308 df-sup 8700 df-inf 8701 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-nn 11439 df-n0 11707 df-z 11793 df-uz 12058 df-fl 12976 |
This theorem is referenced by: fracge0 12988 flge 12989 flflp1 12991 flid 12992 flwordi 12996 flval2 12998 flval3 12999 fladdz 13009 flmulnn0 13011 fldiv4p1lem1div2 13019 fldiv4lem1div2uz2 13020 ceige 13027 flleceil 13035 fleqceilz 13036 quoremz 13037 quoremnn0ALT 13039 facavg 13475 rddif 14560 o1fsum 15027 flo1 15068 bitscmp 15646 isprm7 15907 prmreclem4 16110 zcld 23140 mbfi1fseqlem5 24039 mbfi1fseqlem6 24040 dvfsumlem1 24342 dvfsumlem2 24343 dvfsumlem3 24344 harmonicubnd 25305 harmonicbnd4 25306 ppisval 25399 ppiltx 25472 ppiub 25498 chtub 25506 chpub 25514 logfacubnd 25515 logfaclbnd 25516 bposlem1 25578 bposlem5 25582 bposlem6 25583 lgsquadlem1 25674 chebbnd1lem3 25765 vmadivsum 25776 dchrisumlem1 25783 dchrmusum2 25788 dchrisum0lem2a 25811 mudivsum 25824 mulogsumlem 25825 selberglem2 25840 selberg2lem 25844 pntrlog2bndlem4 25874 pntpbnd2 25881 pntlemg 25892 pntlemr 25896 pntlemk 25900 ostth2lem3 25929 dnibndlem4 33373 dnibndlem10 33379 knoppndvlem19 33422 ltflcei 34354 itg2addnclem3 34419 irrapxlem1 38849 hashnzfzclim 40104 fourierdlem4 41857 fourierdlem65 41917 fllogbd 44018 logbpw2m1 44025 fllog2 44026 nnpw2blen 44038 dignn0flhalflem2 44074 |
Copyright terms: Public domain | W3C validator |