| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flge | Structured version Visualization version GIF version | ||
| Description: The floor function value is the greatest integer less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Fan Zheng, 14-Jul-2016.) |
| Ref | Expression |
|---|---|
| flge | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 ↔ 𝐵 ≤ (⌊‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flltp1 13769 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1)) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐴 < ((⌊‘𝐴) + 1)) |
| 3 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ) | |
| 4 | 3 | zred 12645 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ) |
| 5 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ) | |
| 6 | 5 | flcld 13767 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ) |
| 7 | 6 | peano2zd 12648 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℤ) |
| 8 | 7 | zred 12645 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℝ) |
| 9 | lelttr 11271 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1))) | |
| 10 | 4, 5, 8, 9 | syl3anc 1373 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1))) |
| 11 | 2, 10 | mpan2d 694 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 → 𝐵 < ((⌊‘𝐴) + 1))) |
| 12 | zleltp1 12591 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) ↔ 𝐵 < ((⌊‘𝐴) + 1))) | |
| 13 | 3, 6, 12 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) ↔ 𝐵 < ((⌊‘𝐴) + 1))) |
| 14 | 11, 13 | sylibrd 259 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 → 𝐵 ≤ (⌊‘𝐴))) |
| 15 | flle 13768 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴) |
| 17 | 6 | zred 12645 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ) |
| 18 | letr 11275 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 ≤ (⌊‘𝐴) ∧ (⌊‘𝐴) ≤ 𝐴) → 𝐵 ≤ 𝐴)) | |
| 19 | 4, 17, 5, 18 | syl3anc 1373 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐵 ≤ (⌊‘𝐴) ∧ (⌊‘𝐴) ≤ 𝐴) → 𝐵 ≤ 𝐴)) |
| 20 | 16, 19 | mpan2d 694 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) → 𝐵 ≤ 𝐴)) |
| 21 | 14, 20 | impbid 212 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 ↔ 𝐵 ≤ (⌊‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 1c1 11076 + caddc 11078 < clt 11215 ≤ cle 11216 ℤcz 12536 ⌊cfl 13759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fl 13761 |
| This theorem is referenced by: fllt 13775 flid 13777 flwordi 13781 flval2 13783 flval3 13784 flge0nn0 13789 flge1nn 13790 flmulnn0 13796 btwnzge0 13797 fznnfl 13831 modmuladdnn0 13887 absrdbnd 15315 limsupgre 15454 climrlim2 15520 isprm7 16685 hashdvds 16752 prmreclem3 16896 ovolunlem1a 25404 mbfi1fseqlem4 25626 mbfi1fseqlem5 25627 dvfsumlem1 25939 dvfsumlem3 25942 ppisval 27021 dvdsflf1o 27104 ppiub 27122 chtub 27130 fsumvma2 27132 chpval2 27136 chpchtsum 27137 efexple 27199 bposlem3 27204 bposlem4 27205 bposlem5 27206 gausslemma2dlem4 27287 lgsquadlem1 27298 lgsquadlem2 27299 chebbnd1lem2 27388 chebbnd1lem3 27389 dchrisum0lem1 27434 pntrlog2bndlem6 27501 pntpbnd1 27504 pntpbnd2 27505 pntlemh 27517 pntlemj 27521 pntlemf 27523 aks4d1p1p2 42065 aks4d1p3 42073 aks4d1p6 42076 aks4d1p7d1 42077 aks4d1p7 42078 aks4d1p8 42082 aks4d1p9 42083 aks6d1c2lem4 42122 aks6d1c2 42125 aks6d1c6lem4 42168 aks6d1c7lem1 42175 aks6d1c7lem2 42176 dirkertrigeqlem3 46105 nnolog2flm1 48583 |
| Copyright terms: Public domain | W3C validator |