| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flge | Structured version Visualization version GIF version | ||
| Description: The floor function value is the greatest integer less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Fan Zheng, 14-Jul-2016.) |
| Ref | Expression |
|---|---|
| flge | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 ↔ 𝐵 ≤ (⌊‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flltp1 13817 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1)) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐴 < ((⌊‘𝐴) + 1)) |
| 3 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ) | |
| 4 | 3 | zred 12697 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ) |
| 5 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ) | |
| 6 | 5 | flcld 13815 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ) |
| 7 | 6 | peano2zd 12700 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℤ) |
| 8 | 7 | zred 12697 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℝ) |
| 9 | lelttr 11325 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1))) | |
| 10 | 4, 5, 8, 9 | syl3anc 1373 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1))) |
| 11 | 2, 10 | mpan2d 694 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 → 𝐵 < ((⌊‘𝐴) + 1))) |
| 12 | zleltp1 12643 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) ↔ 𝐵 < ((⌊‘𝐴) + 1))) | |
| 13 | 3, 6, 12 | syl2anc 584 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) ↔ 𝐵 < ((⌊‘𝐴) + 1))) |
| 14 | 11, 13 | sylibrd 259 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 → 𝐵 ≤ (⌊‘𝐴))) |
| 15 | flle 13816 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴) |
| 17 | 6 | zred 12697 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ) |
| 18 | letr 11329 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 ≤ (⌊‘𝐴) ∧ (⌊‘𝐴) ≤ 𝐴) → 𝐵 ≤ 𝐴)) | |
| 19 | 4, 17, 5, 18 | syl3anc 1373 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐵 ≤ (⌊‘𝐴) ∧ (⌊‘𝐴) ≤ 𝐴) → 𝐵 ≤ 𝐴)) |
| 20 | 16, 19 | mpan2d 694 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) → 𝐵 ≤ 𝐴)) |
| 21 | 14, 20 | impbid 212 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 ↔ 𝐵 ≤ (⌊‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 1c1 11130 + caddc 11132 < clt 11269 ≤ cle 11270 ℤcz 12588 ⌊cfl 13807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fl 13809 |
| This theorem is referenced by: fllt 13823 flid 13825 flwordi 13829 flval2 13831 flval3 13832 flge0nn0 13837 flge1nn 13838 flmulnn0 13844 btwnzge0 13845 fznnfl 13879 modmuladdnn0 13933 absrdbnd 15360 limsupgre 15497 climrlim2 15563 isprm7 16727 hashdvds 16794 prmreclem3 16938 ovolunlem1a 25449 mbfi1fseqlem4 25671 mbfi1fseqlem5 25672 dvfsumlem1 25984 dvfsumlem3 25987 ppisval 27066 dvdsflf1o 27149 ppiub 27167 chtub 27175 fsumvma2 27177 chpval2 27181 chpchtsum 27182 efexple 27244 bposlem3 27249 bposlem4 27250 bposlem5 27251 gausslemma2dlem4 27332 lgsquadlem1 27343 lgsquadlem2 27344 chebbnd1lem2 27433 chebbnd1lem3 27434 dchrisum0lem1 27479 pntrlog2bndlem6 27546 pntpbnd1 27549 pntpbnd2 27550 pntlemh 27562 pntlemj 27566 pntlemf 27568 aks4d1p1p2 42083 aks4d1p3 42091 aks4d1p6 42094 aks4d1p7d1 42095 aks4d1p7 42096 aks4d1p8 42100 aks4d1p9 42101 aks6d1c2lem4 42140 aks6d1c2 42143 aks6d1c6lem4 42186 aks6d1c7lem1 42193 aks6d1c7lem2 42194 dirkertrigeqlem3 46129 nnolog2flm1 48570 |
| Copyright terms: Public domain | W3C validator |