MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flge Structured version   Visualization version   GIF version

Theorem flge 13845
Description: The floor function value is the greatest integer less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Fan Zheng, 14-Jul-2016.)
Assertion
Ref Expression
flge ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))

Proof of Theorem flge
StepHypRef Expression
1 flltp1 13840 . . . . 5 (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1))
21adantr 480 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐴 < ((⌊‘𝐴) + 1))
3 simpr 484 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
43zred 12722 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ)
5 simpl 482 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ)
65flcld 13838 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ)
76peano2zd 12725 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℤ)
87zred 12722 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℝ)
9 lelttr 11351 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → ((𝐵𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
104, 5, 8, 9syl3anc 1373 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐵𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
112, 10mpan2d 694 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 < ((⌊‘𝐴) + 1)))
12 zleltp1 12668 . . . 4 ((𝐵 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) ↔ 𝐵 < ((⌊‘𝐴) + 1)))
133, 6, 12syl2anc 584 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) ↔ 𝐵 < ((⌊‘𝐴) + 1)))
1411, 13sylibrd 259 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))
15 flle 13839 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
1615adantr 480 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴)
176zred 12722 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ)
18 letr 11355 . . . 4 ((𝐵 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 ≤ (⌊‘𝐴) ∧ (⌊‘𝐴) ≤ 𝐴) → 𝐵𝐴))
194, 17, 5, 18syl3anc 1373 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐵 ≤ (⌊‘𝐴) ∧ (⌊‘𝐴) ≤ 𝐴) → 𝐵𝐴))
2016, 19mpan2d 694 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) → 𝐵𝐴))
2114, 20impbid 212 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cz 12613  cfl 13830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fl 13832
This theorem is referenced by:  fllt  13846  flid  13848  flwordi  13852  flval2  13854  flval3  13855  flge0nn0  13860  flge1nn  13861  flmulnn0  13867  btwnzge0  13868  fznnfl  13902  modmuladdnn0  13956  absrdbnd  15380  limsupgre  15517  climrlim2  15583  isprm7  16745  hashdvds  16812  prmreclem3  16956  ovolunlem1a  25531  mbfi1fseqlem4  25753  mbfi1fseqlem5  25754  dvfsumlem1  26066  dvfsumlem3  26069  ppisval  27147  dvdsflf1o  27230  ppiub  27248  chtub  27256  fsumvma2  27258  chpval2  27262  chpchtsum  27263  efexple  27325  bposlem3  27330  bposlem4  27331  bposlem5  27332  gausslemma2dlem4  27413  lgsquadlem1  27424  lgsquadlem2  27425  chebbnd1lem2  27514  chebbnd1lem3  27515  dchrisum0lem1  27560  pntrlog2bndlem6  27627  pntpbnd1  27630  pntpbnd2  27631  pntlemh  27643  pntlemj  27647  pntlemf  27649  aks4d1p1p2  42071  aks4d1p3  42079  aks4d1p6  42082  aks4d1p7d1  42083  aks4d1p7  42084  aks4d1p8  42088  aks4d1p9  42089  aks6d1c2lem4  42128  aks6d1c2  42131  aks6d1c6lem4  42174  aks6d1c7lem1  42181  aks6d1c7lem2  42182  dirkertrigeqlem3  46115  nnolog2flm1  48511
  Copyright terms: Public domain W3C validator