![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flge | Structured version Visualization version GIF version |
Description: The floor function value is the greatest integer less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Fan Zheng, 14-Jul-2016.) |
Ref | Expression |
---|---|
flge | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 ↔ 𝐵 ≤ (⌊‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flltp1 13763 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1)) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐴 < ((⌊‘𝐴) + 1)) |
3 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ) | |
4 | 3 | zred 12664 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ) |
5 | simpl 482 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ) | |
6 | 5 | flcld 13761 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ) |
7 | 6 | peano2zd 12667 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℤ) |
8 | 7 | zred 12664 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℝ) |
9 | lelttr 11302 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1))) | |
10 | 4, 5, 8, 9 | syl3anc 1368 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐵 ≤ 𝐴 ∧ 𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1))) |
11 | 2, 10 | mpan2d 691 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 → 𝐵 < ((⌊‘𝐴) + 1))) |
12 | zleltp1 12611 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) ↔ 𝐵 < ((⌊‘𝐴) + 1))) | |
13 | 3, 6, 12 | syl2anc 583 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) ↔ 𝐵 < ((⌊‘𝐴) + 1))) |
14 | 11, 13 | sylibrd 259 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 → 𝐵 ≤ (⌊‘𝐴))) |
15 | flle 13762 | . . . 4 ⊢ (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴) | |
16 | 15 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴) |
17 | 6 | zred 12664 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ) |
18 | letr 11306 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 ≤ (⌊‘𝐴) ∧ (⌊‘𝐴) ≤ 𝐴) → 𝐵 ≤ 𝐴)) | |
19 | 4, 17, 5, 18 | syl3anc 1368 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐵 ≤ (⌊‘𝐴) ∧ (⌊‘𝐴) ≤ 𝐴) → 𝐵 ≤ 𝐴)) |
20 | 16, 19 | mpan2d 691 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) → 𝐵 ≤ 𝐴)) |
21 | 14, 20 | impbid 211 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ 𝐴 ↔ 𝐵 ≤ (⌊‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 class class class wbr 5139 ‘cfv 6534 (class class class)co 7402 ℝcr 11106 1c1 11108 + caddc 11110 < clt 11246 ≤ cle 11247 ℤcz 12556 ⌊cfl 13753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-sup 9434 df-inf 9435 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-nn 12211 df-n0 12471 df-z 12557 df-uz 12821 df-fl 13755 |
This theorem is referenced by: fllt 13769 flid 13771 flwordi 13775 flval2 13777 flval3 13778 flge0nn0 13783 flge1nn 13784 flmulnn0 13790 btwnzge0 13791 fznnfl 13825 modmuladdnn0 13878 absrdbnd 15286 limsupgre 15423 climrlim2 15489 isprm7 16644 hashdvds 16709 prmreclem3 16852 ovolunlem1a 25349 mbfi1fseqlem4 25572 mbfi1fseqlem5 25573 dvfsumlem1 25884 dvfsumlem3 25887 ppisval 26955 dvdsflf1o 27038 ppiub 27056 chtub 27064 fsumvma2 27066 chpval2 27070 chpchtsum 27071 efexple 27133 bposlem3 27138 bposlem4 27139 bposlem5 27140 gausslemma2dlem4 27221 lgsquadlem1 27232 lgsquadlem2 27233 chebbnd1lem2 27322 chebbnd1lem3 27323 dchrisum0lem1 27368 pntrlog2bndlem6 27435 pntpbnd1 27438 pntpbnd2 27439 pntlemh 27451 pntlemj 27455 pntlemf 27457 aks4d1p1p2 41432 aks4d1p3 41440 aks4d1p6 41443 aks4d1p7d1 41444 aks4d1p7 41445 aks4d1p8 41449 aks4d1p9 41450 dirkertrigeqlem3 45326 nnolog2flm1 47489 |
Copyright terms: Public domain | W3C validator |