MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flge Structured version   Visualization version   GIF version

Theorem flge 13766
Description: The floor function value is the greatest integer less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Fan Zheng, 14-Jul-2016.)
Assertion
Ref Expression
flge ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))

Proof of Theorem flge
StepHypRef Expression
1 flltp1 13761 . . . . 5 (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1))
21adantr 481 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐴 < ((⌊‘𝐴) + 1))
3 simpr 485 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
43zred 12662 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ)
5 simpl 483 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ)
65flcld 13759 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ)
76peano2zd 12665 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℤ)
87zred 12662 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℝ)
9 lelttr 11300 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → ((𝐵𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
104, 5, 8, 9syl3anc 1371 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐵𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
112, 10mpan2d 692 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 < ((⌊‘𝐴) + 1)))
12 zleltp1 12609 . . . 4 ((𝐵 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) ↔ 𝐵 < ((⌊‘𝐴) + 1)))
133, 6, 12syl2anc 584 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) ↔ 𝐵 < ((⌊‘𝐴) + 1)))
1411, 13sylibrd 258 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))
15 flle 13760 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
1615adantr 481 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴)
176zred 12662 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ)
18 letr 11304 . . . 4 ((𝐵 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 ≤ (⌊‘𝐴) ∧ (⌊‘𝐴) ≤ 𝐴) → 𝐵𝐴))
194, 17, 5, 18syl3anc 1371 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐵 ≤ (⌊‘𝐴) ∧ (⌊‘𝐴) ≤ 𝐴) → 𝐵𝐴))
2016, 19mpan2d 692 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) → 𝐵𝐴))
2114, 20impbid 211 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106   class class class wbr 5147  cfv 6540  (class class class)co 7405  cr 11105  1c1 11107   + caddc 11109   < clt 11244  cle 11245  cz 12554  cfl 13751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-fl 13753
This theorem is referenced by:  fllt  13767  flid  13769  flwordi  13773  flval2  13775  flval3  13776  flge0nn0  13781  flge1nn  13782  flmulnn0  13788  btwnzge0  13789  fznnfl  13823  modmuladdnn0  13876  absrdbnd  15284  limsupgre  15421  climrlim2  15487  isprm7  16641  hashdvds  16704  prmreclem3  16847  ovolunlem1a  25004  mbfi1fseqlem4  25227  mbfi1fseqlem5  25228  dvfsumlem1  25534  dvfsumlem3  25536  ppisval  26597  dvdsflf1o  26680  ppiub  26696  chtub  26704  fsumvma2  26706  chpval2  26710  chpchtsum  26711  efexple  26773  bposlem3  26778  bposlem4  26779  bposlem5  26780  gausslemma2dlem4  26861  lgsquadlem1  26872  lgsquadlem2  26873  chebbnd1lem2  26962  chebbnd1lem3  26963  dchrisum0lem1  27008  pntrlog2bndlem6  27075  pntpbnd1  27078  pntpbnd2  27079  pntlemh  27091  pntlemj  27095  pntlemf  27097  aks4d1p1p2  40923  aks4d1p3  40931  aks4d1p6  40934  aks4d1p7d1  40935  aks4d1p7  40936  aks4d1p8  40940  aks4d1p9  40941  dirkertrigeqlem3  44802  nnolog2flm1  47229
  Copyright terms: Public domain W3C validator