MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flge Structured version   Visualization version   GIF version

Theorem flge 13841
Description: The floor function value is the greatest integer less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Fan Zheng, 14-Jul-2016.)
Assertion
Ref Expression
flge ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))

Proof of Theorem flge
StepHypRef Expression
1 flltp1 13836 . . . . 5 (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1))
21adantr 480 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐴 < ((⌊‘𝐴) + 1))
3 simpr 484 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
43zred 12719 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ)
5 simpl 482 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ)
65flcld 13834 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ)
76peano2zd 12722 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℤ)
87zred 12719 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℝ)
9 lelttr 11348 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → ((𝐵𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
104, 5, 8, 9syl3anc 1370 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐵𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
112, 10mpan2d 694 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 < ((⌊‘𝐴) + 1)))
12 zleltp1 12665 . . . 4 ((𝐵 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) ↔ 𝐵 < ((⌊‘𝐴) + 1)))
133, 6, 12syl2anc 584 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) ↔ 𝐵 < ((⌊‘𝐴) + 1)))
1411, 13sylibrd 259 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))
15 flle 13835 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
1615adantr 480 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴)
176zred 12719 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ)
18 letr 11352 . . . 4 ((𝐵 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 ≤ (⌊‘𝐴) ∧ (⌊‘𝐴) ≤ 𝐴) → 𝐵𝐴))
194, 17, 5, 18syl3anc 1370 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐵 ≤ (⌊‘𝐴) ∧ (⌊‘𝐴) ≤ 𝐴) → 𝐵𝐴))
2016, 19mpan2d 694 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) → 𝐵𝐴))
2114, 20impbid 212 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2105   class class class wbr 5147  cfv 6562  (class class class)co 7430  cr 11151  1c1 11153   + caddc 11155   < clt 11292  cle 11293  cz 12610  cfl 13826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fl 13828
This theorem is referenced by:  fllt  13842  flid  13844  flwordi  13848  flval2  13850  flval3  13851  flge0nn0  13856  flge1nn  13857  flmulnn0  13863  btwnzge0  13864  fznnfl  13898  modmuladdnn0  13952  absrdbnd  15376  limsupgre  15513  climrlim2  15579  isprm7  16741  hashdvds  16808  prmreclem3  16951  ovolunlem1a  25544  mbfi1fseqlem4  25767  mbfi1fseqlem5  25768  dvfsumlem1  26080  dvfsumlem3  26083  ppisval  27161  dvdsflf1o  27244  ppiub  27262  chtub  27270  fsumvma2  27272  chpval2  27276  chpchtsum  27277  efexple  27339  bposlem3  27344  bposlem4  27345  bposlem5  27346  gausslemma2dlem4  27427  lgsquadlem1  27438  lgsquadlem2  27439  chebbnd1lem2  27528  chebbnd1lem3  27529  dchrisum0lem1  27574  pntrlog2bndlem6  27641  pntpbnd1  27644  pntpbnd2  27645  pntlemh  27657  pntlemj  27661  pntlemf  27663  aks4d1p1p2  42051  aks4d1p3  42059  aks4d1p6  42062  aks4d1p7d1  42063  aks4d1p7  42064  aks4d1p8  42068  aks4d1p9  42069  aks6d1c2lem4  42108  aks6d1c2  42111  aks6d1c6lem4  42154  aks6d1c7lem1  42161  aks6d1c7lem2  42162  dirkertrigeqlem3  46055  nnolog2flm1  48439
  Copyright terms: Public domain W3C validator