MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flge Structured version   Visualization version   GIF version

Theorem flge 13716
Description: The floor function value is the greatest integer less than or equal to its argument. (Contributed by NM, 15-Nov-2004.) (Proof shortened by Fan Zheng, 14-Jul-2016.)
Assertion
Ref Expression
flge ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))

Proof of Theorem flge
StepHypRef Expression
1 flltp1 13711 . . . . 5 (𝐴 ∈ ℝ → 𝐴 < ((⌊‘𝐴) + 1))
21adantr 482 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐴 < ((⌊‘𝐴) + 1))
3 simpr 486 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
43zred 12612 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℝ)
5 simpl 484 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ)
65flcld 13709 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ∈ ℤ)
76peano2zd 12615 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℤ)
87zred 12612 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((⌊‘𝐴) + 1) ∈ ℝ)
9 lelttr 11250 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ((⌊‘𝐴) + 1) ∈ ℝ) → ((𝐵𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
104, 5, 8, 9syl3anc 1372 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐵𝐴𝐴 < ((⌊‘𝐴) + 1)) → 𝐵 < ((⌊‘𝐴) + 1)))
112, 10mpan2d 693 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 < ((⌊‘𝐴) + 1)))
12 zleltp1 12559 . . . 4 ((𝐵 ∈ ℤ ∧ (⌊‘𝐴) ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) ↔ 𝐵 < ((⌊‘𝐴) + 1)))
133, 6, 12syl2anc 585 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) ↔ 𝐵 < ((⌊‘𝐴) + 1)))
1411, 13sylibrd 259 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))
15 flle 13710 . . . 4 (𝐴 ∈ ℝ → (⌊‘𝐴) ≤ 𝐴)
1615adantr 482 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ≤ 𝐴)
176zred 12612 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (⌊‘𝐴) ∈ ℝ)
18 letr 11254 . . . 4 ((𝐵 ∈ ℝ ∧ (⌊‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐵 ≤ (⌊‘𝐴) ∧ (⌊‘𝐴) ≤ 𝐴) → 𝐵𝐴))
194, 17, 5, 18syl3anc 1372 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → ((𝐵 ≤ (⌊‘𝐴) ∧ (⌊‘𝐴) ≤ 𝐴) → 𝐵𝐴))
2016, 19mpan2d 693 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵 ≤ (⌊‘𝐴) → 𝐵𝐴))
2114, 20impbid 211 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ) → (𝐵𝐴𝐵 ≤ (⌊‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107   class class class wbr 5106  cfv 6497  (class class class)co 7358  cr 11055  1c1 11057   + caddc 11059   < clt 11194  cle 11195  cz 12504  cfl 13701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-sup 9383  df-inf 9384  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-n0 12419  df-z 12505  df-uz 12769  df-fl 13703
This theorem is referenced by:  fllt  13717  flid  13719  flwordi  13723  flval2  13725  flval3  13726  flge0nn0  13731  flge1nn  13732  flmulnn0  13738  btwnzge0  13739  fznnfl  13773  modmuladdnn0  13826  absrdbnd  15232  limsupgre  15369  climrlim2  15435  isprm7  16589  hashdvds  16652  prmreclem3  16795  ovolunlem1a  24876  mbfi1fseqlem4  25099  mbfi1fseqlem5  25100  dvfsumlem1  25406  dvfsumlem3  25408  ppisval  26469  dvdsflf1o  26552  ppiub  26568  chtub  26576  fsumvma2  26578  chpval2  26582  chpchtsum  26583  efexple  26645  bposlem3  26650  bposlem4  26651  bposlem5  26652  gausslemma2dlem4  26733  lgsquadlem1  26744  lgsquadlem2  26745  chebbnd1lem2  26834  chebbnd1lem3  26835  dchrisum0lem1  26880  pntrlog2bndlem6  26947  pntpbnd1  26950  pntpbnd2  26951  pntlemh  26963  pntlemj  26967  pntlemf  26969  aks4d1p1p2  40573  aks4d1p3  40581  aks4d1p6  40584  aks4d1p7d1  40585  aks4d1p7  40586  aks4d1p8  40590  aks4d1p9  40591  dirkertrigeqlem3  44427  nnolog2flm1  46762
  Copyright terms: Public domain W3C validator