Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2099
class class class wbr 5142 (class class class)co 7414
ℝcr 11129 1c1 11131
≤ cle 11271 −
cmin 11466 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906
ax-6 1964 ax-7 2004 ax-8 2101
ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions:
df-bi 206 df-an 396
df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 |
This theorem is referenced by: fzossrbm1
13685 seqcoll
14449 efgsp1
19683 efgredlemd
19690 efgredlem
19693 2lgslem1c
27313 rplogsumlem1
27404 logdivbnd
27476 wwlksm1edg
29679 clwlkclwwlklem2
29797 clwlkclwwlk
29799 clwwisshclwwslem
29811 clwwlkf
29844 wwlksubclwwlk
29855 fzspl
32542 pfxlsw2ccat
32655 wrdt2ind
32656 psgnfzto1stlem
32799 submateqlem1
33344 elfzm12
35215 knoppndvlem14
35936 poimirlem6
37034 poimirlem7
37035 poimirlem13
37041 aks4d1p1p2
41478 sticksstones10
41559 sticksstones12a
41561 sticksstones12
41562 oddfl
44582 fmul01lt1lem2
44896 stoweidlem11
45322 wallispilem3
45378 etransclem23
45568 upwordnul
46189 iccpartipre
46684 flnn0div2ge
47529 |