MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lem1d Structured version   Visualization version   GIF version

Theorem lem1d 11644
Description: A number minus 1 is less than or equal to itself. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
ltp1d.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
lem1d (𝜑 → (𝐴 − 1) ≤ 𝐴)

Proof of Theorem lem1d
StepHypRef Expression
1 ltp1d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 lem1 11554 . 2 (𝐴 ∈ ℝ → (𝐴 − 1) ≤ 𝐴)
31, 2syl 17 1 (𝜑 → (𝐴 − 1) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113   class class class wbr 5027  (class class class)co 7164  cr 10607  1c1 10609  cle 10747  cmin 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-op 4520  df-uni 4794  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944
This theorem is referenced by:  fzossrbm1  13150  seqcoll  13909  efgsp1  18974  efgredlemd  18981  efgredlem  18984  2lgslem1c  26121  rplogsumlem1  26212  logdivbnd  26284  wwlksm1edg  27811  clwlkclwwlklem2  27929  clwlkclwwlk  27931  clwwisshclwwslem  27943  clwwlkf  27976  wwlksubclwwlk  27987  fzspl  30678  pfxlsw2ccat  30791  wrdt2ind  30792  psgnfzto1stlem  30936  submateqlem1  31321  elfzm12  33196  knoppndvlem14  34335  poimirlem6  35395  poimirlem7  35396  poimirlem13  35402  aks4d1p1p2  39686  oddfl  42337  fmul01lt1lem2  42652  stoweidlem11  43078  wallispilem3  43134  etransclem23  43324  iccpartipre  44391  flnn0div2ge  45397
  Copyright terms: Public domain W3C validator