| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lem1d | Structured version Visualization version GIF version | ||
| Description: A number minus 1 is less than or equal to itself. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| lem1d | ⊢ (𝜑 → (𝐴 − 1) ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | lem1 12092 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ≤ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 − 1) ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 class class class wbr 5123 (class class class)co 7413 ℝcr 11136 1c1 11138 ≤ cle 11278 − cmin 11474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 |
| This theorem is referenced by: fzossrbm1 13710 seqcoll 14486 efgsp1 19724 efgredlemd 19731 efgredlem 19734 2lgslem1c 27374 rplogsumlem1 27465 logdivbnd 27537 wwlksm1edg 29830 clwlkclwwlklem2 29948 clwlkclwwlk 29950 clwwisshclwwslem 29962 clwwlkf 29995 wwlksubclwwlk 30006 fzspl 32735 pfxlsw2ccat 32880 wrdt2ind 32883 psgnfzto1stlem 33064 1arithidomlem1 33503 1arithidomlem2 33504 1arithidom 33505 submateqlem1 33781 elfzm12 35655 knoppndvlem14 36501 poimirlem6 37608 poimirlem7 37609 poimirlem13 37615 aks4d1p1p2 42046 sticksstones10 42131 sticksstones12a 42133 sticksstones12 42134 bcle2d 42155 aks6d1c7lem1 42156 unitscyglem4 42174 oddfl 45261 fmul01lt1lem2 45572 stoweidlem11 45998 wallispilem3 46054 etransclem23 46244 upwordnul 46867 iccpartipre 47381 flnn0div2ge 48427 |
| Copyright terms: Public domain | W3C validator |