MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lem1d Structured version   Visualization version   GIF version

Theorem lem1d 12146
Description: A number minus 1 is less than or equal to itself. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
ltp1d.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
lem1d (𝜑 → (𝐴 − 1) ≤ 𝐴)

Proof of Theorem lem1d
StepHypRef Expression
1 ltp1d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 lem1 12056 . 2 (𝐴 ∈ ℝ → (𝐴 − 1) ≤ 𝐴)
31, 2syl 17 1 (𝜑 → (𝐴 − 1) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   class class class wbr 5148  (class class class)co 7408  cr 11108  1c1 11110  cle 11248  cmin 11443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446
This theorem is referenced by:  fzossrbm1  13660  seqcoll  14424  efgsp1  19604  efgredlemd  19611  efgredlem  19614  2lgslem1c  26893  rplogsumlem1  26984  logdivbnd  27056  wwlksm1edg  29132  clwlkclwwlklem2  29250  clwlkclwwlk  29252  clwwisshclwwslem  29264  clwwlkf  29297  wwlksubclwwlk  29308  fzspl  31996  pfxlsw2ccat  32111  wrdt2ind  32112  psgnfzto1stlem  32254  submateqlem1  32782  elfzm12  34655  knoppndvlem14  35396  poimirlem6  36489  poimirlem7  36490  poimirlem13  36496  aks4d1p1p2  40930  sticksstones10  40966  sticksstones12a  40968  sticksstones12  40969  oddfl  43977  fmul01lt1lem2  44291  stoweidlem11  44717  wallispilem3  44773  etransclem23  44963  upwordnul  45584  iccpartipre  46079  flnn0div2ge  47209
  Copyright terms: Public domain W3C validator