| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lem1d | Structured version Visualization version GIF version | ||
| Description: A number minus 1 is less than or equal to itself. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| lem1d | ⊢ (𝜑 → (𝐴 − 1) ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | lem1 11971 | . 2 ⊢ (𝐴 ∈ ℝ → (𝐴 − 1) ≤ 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 − 1) ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 class class class wbr 5093 (class class class)co 7352 ℝcr 11012 1c1 11014 ≤ cle 11154 − cmin 11351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 |
| This theorem is referenced by: fzossrbm1 13590 seqcoll 14373 efgsp1 19651 efgredlemd 19658 efgredlem 19661 2lgslem1c 27332 rplogsumlem1 27423 logdivbnd 27495 wwlksm1edg 29861 clwlkclwwlklem2 29982 clwlkclwwlk 29984 clwwisshclwwslem 29996 clwwlkf 30029 wwlksubclwwlk 30040 fzspl 32776 pfxlsw2ccat 32938 wrdt2ind 32941 psgnfzto1stlem 33076 1arithidomlem1 33507 1arithidomlem2 33508 1arithidom 33509 submateqlem1 33841 elfzm12 35740 knoppndvlem14 36590 poimirlem6 37686 poimirlem7 37687 poimirlem13 37693 aks4d1p1p2 42183 sticksstones10 42268 sticksstones12a 42270 sticksstones12 42271 bcle2d 42292 aks6d1c7lem1 42293 unitscyglem4 42311 oddfl 45403 fmul01lt1lem2 45709 stoweidlem11 46133 wallispilem3 46189 etransclem23 46379 iccpartipre 47545 flnn0div2ge 48658 |
| Copyright terms: Public domain | W3C validator |