MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lem1d Structured version   Visualization version   GIF version

Theorem lem1d 12052
Description: A number minus 1 is less than or equal to itself. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
ltp1d.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
lem1d (𝜑 → (𝐴 − 1) ≤ 𝐴)

Proof of Theorem lem1d
StepHypRef Expression
1 ltp1d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 lem1 11961 . 2 (𝐴 ∈ ℝ → (𝐴 − 1) ≤ 𝐴)
31, 2syl 17 1 (𝜑 → (𝐴 − 1) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111   class class class wbr 5091  (class class class)co 7346  cr 11002  1c1 11004  cle 11144  cmin 11341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344
This theorem is referenced by:  fzossrbm1  13585  seqcoll  14368  efgsp1  19647  efgredlemd  19654  efgredlem  19657  2lgslem1c  27329  rplogsumlem1  27420  logdivbnd  27492  wwlksm1edg  29857  clwlkclwwlklem2  29975  clwlkclwwlk  29977  clwwisshclwwslem  29989  clwwlkf  30022  wwlksubclwwlk  30033  fzspl  32767  pfxlsw2ccat  32926  wrdt2ind  32929  psgnfzto1stlem  33064  1arithidomlem1  33495  1arithidomlem2  33496  1arithidom  33497  submateqlem1  33815  elfzm12  35707  knoppndvlem14  36558  poimirlem6  37665  poimirlem7  37666  poimirlem13  37672  aks4d1p1p2  42102  sticksstones10  42187  sticksstones12a  42189  sticksstones12  42190  bcle2d  42211  aks6d1c7lem1  42212  unitscyglem4  42230  oddfl  45318  fmul01lt1lem2  45624  stoweidlem11  46048  wallispilem3  46104  etransclem23  46294  iccpartipre  47451  flnn0div2ge  48564
  Copyright terms: Public domain W3C validator