Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomuspgrlem2e Structured version   Visualization version   GIF version

Theorem isomuspgrlem2e 45549
Description: Lemma 5 for isomuspgrlem2 45550. (Contributed by AV, 1-Dec-2022.)
Hypotheses
Ref Expression
isomushgr.v 𝑉 = (Vtx‘𝐴)
isomushgr.w 𝑊 = (Vtx‘𝐵)
isomushgr.e 𝐸 = (Edg‘𝐴)
isomushgr.k 𝐾 = (Edg‘𝐵)
isomuspgrlem2.g 𝐺 = (𝑥𝐸 ↦ (𝐹𝑥))
isomuspgrlem2.a (𝜑𝐴 ∈ USPGraph)
isomuspgrlem2.f (𝜑𝐹:𝑉1-1-onto𝑊)
isomuspgrlem2.i (𝜑 → ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹𝑎), (𝐹𝑏)} ∈ 𝐾))
isomuspgrlem2.x (𝜑𝐹𝑋)
isomuspgrlem2.b (𝜑𝐵 ∈ USPGraph)
Assertion
Ref Expression
isomuspgrlem2e (𝜑𝐺:𝐸1-1-onto𝐾)
Distinct variable groups:   𝑎,𝑏,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝐸   𝑥,𝐾   𝑥,𝑉   𝑥,𝑊   𝑥,𝐹   𝑥,𝑋   𝐸,𝑎,𝑏   𝐹,𝑎,𝑏   𝐾,𝑎,𝑏   𝑉,𝑎,𝑏   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐺(𝑥,𝑎,𝑏)   𝑊(𝑎,𝑏)   𝑋(𝑎,𝑏)

Proof of Theorem isomuspgrlem2e
StepHypRef Expression
1 isomushgr.v . . 3 𝑉 = (Vtx‘𝐴)
2 isomushgr.w . . 3 𝑊 = (Vtx‘𝐵)
3 isomushgr.e . . 3 𝐸 = (Edg‘𝐴)
4 isomushgr.k . . 3 𝐾 = (Edg‘𝐵)
5 isomuspgrlem2.g . . 3 𝐺 = (𝑥𝐸 ↦ (𝐹𝑥))
6 isomuspgrlem2.a . . 3 (𝜑𝐴 ∈ USPGraph)
7 isomuspgrlem2.f . . 3 (𝜑𝐹:𝑉1-1-onto𝑊)
8 isomuspgrlem2.i . . 3 (𝜑 → ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝐹𝑎), (𝐹𝑏)} ∈ 𝐾))
9 isomuspgrlem2.x . . 3 (𝜑𝐹𝑋)
101, 2, 3, 4, 5, 6, 7, 8, 9isomuspgrlem2c 45547 . 2 (𝜑𝐺:𝐸1-1𝐾)
11 isomuspgrlem2.b . . 3 (𝜑𝐵 ∈ USPGraph)
121, 2, 3, 4, 5, 6, 7, 8, 9, 11isomuspgrlem2d 45548 . 2 (𝜑𝐺:𝐸onto𝐾)
13 df-f1o 6473 . 2 (𝐺:𝐸1-1-onto𝐾 ↔ (𝐺:𝐸1-1𝐾𝐺:𝐸onto𝐾))
1410, 12, 13sylanbrc 583 1 (𝜑𝐺:𝐸1-1-onto𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wcel 2105  wral 3062  {cpr 4573  cmpt 5170  cima 5611  1-1wf1 6463  ontowfo 6464  1-1-ontowf1o 6465  cfv 6466  Vtxcvtx 27502  Edgcedg 27553  USPGraphcuspgr 27654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-om 7760  df-1st 7878  df-2nd 7879  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-1o 8346  df-2o 8347  df-oadd 8350  df-er 8548  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-dju 9737  df-card 9775  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-nn 12054  df-2 12116  df-n0 12314  df-xnn0 12386  df-z 12400  df-uz 12663  df-fz 13320  df-hash 14125  df-edg 27554  df-uhgr 27564  df-upgr 27588  df-uspgr 27656
This theorem is referenced by:  isomuspgrlem2  45550
  Copyright terms: Public domain W3C validator