Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > issubrngd2 | Structured version Visualization version GIF version |
Description: Prove a subring by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.) |
Ref | Expression |
---|---|
issubrngd.s | ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) |
issubrngd.z | ⊢ (𝜑 → 0 = (0g‘𝐼)) |
issubrngd.p | ⊢ (𝜑 → + = (+g‘𝐼)) |
issubrngd.ss | ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) |
issubrngd.zcl | ⊢ (𝜑 → 0 ∈ 𝐷) |
issubrngd.acl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) |
issubrngd.ncl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) |
issubrngd.o | ⊢ (𝜑 → 1 = (1r‘𝐼)) |
issubrngd.t | ⊢ (𝜑 → · = (.r‘𝐼)) |
issubrngd.ocl | ⊢ (𝜑 → 1 ∈ 𝐷) |
issubrngd.tcl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 · 𝑦) ∈ 𝐷) |
issubrngd.g | ⊢ (𝜑 → 𝐼 ∈ Ring) |
Ref | Expression |
---|---|
issubrngd2 | ⊢ (𝜑 → 𝐷 ∈ (SubRing‘𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubrngd.s | . . 3 ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) | |
2 | issubrngd.z | . . 3 ⊢ (𝜑 → 0 = (0g‘𝐼)) | |
3 | issubrngd.p | . . 3 ⊢ (𝜑 → + = (+g‘𝐼)) | |
4 | issubrngd.ss | . . 3 ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) | |
5 | issubrngd.zcl | . . 3 ⊢ (𝜑 → 0 ∈ 𝐷) | |
6 | issubrngd.acl | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) | |
7 | issubrngd.ncl | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) | |
8 | issubrngd.g | . . . 4 ⊢ (𝜑 → 𝐼 ∈ Ring) | |
9 | ringgrp 19788 | . . . 4 ⊢ (𝐼 ∈ Ring → 𝐼 ∈ Grp) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝐼 ∈ Grp) |
11 | 1, 2, 3, 4, 5, 6, 7, 10 | issubgrpd2 18771 | . 2 ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) |
12 | issubrngd.o | . . 3 ⊢ (𝜑 → 1 = (1r‘𝐼)) | |
13 | issubrngd.ocl | . . 3 ⊢ (𝜑 → 1 ∈ 𝐷) | |
14 | 12, 13 | eqeltrrd 2840 | . 2 ⊢ (𝜑 → (1r‘𝐼) ∈ 𝐷) |
15 | issubrngd.t | . . . . 5 ⊢ (𝜑 → · = (.r‘𝐼)) | |
16 | 15 | oveqdr 7303 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 · 𝑦) = (𝑥(.r‘𝐼)𝑦)) |
17 | issubrngd.tcl | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 · 𝑦) ∈ 𝐷) | |
18 | 17 | 3expb 1119 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 · 𝑦) ∈ 𝐷) |
19 | 16, 18 | eqeltrrd 2840 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥(.r‘𝐼)𝑦) ∈ 𝐷) |
20 | 19 | ralrimivva 3123 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐼)𝑦) ∈ 𝐷) |
21 | eqid 2738 | . . . 4 ⊢ (Base‘𝐼) = (Base‘𝐼) | |
22 | eqid 2738 | . . . 4 ⊢ (1r‘𝐼) = (1r‘𝐼) | |
23 | eqid 2738 | . . . 4 ⊢ (.r‘𝐼) = (.r‘𝐼) | |
24 | 21, 22, 23 | issubrg2 20044 | . . 3 ⊢ (𝐼 ∈ Ring → (𝐷 ∈ (SubRing‘𝐼) ↔ (𝐷 ∈ (SubGrp‘𝐼) ∧ (1r‘𝐼) ∈ 𝐷 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐼)𝑦) ∈ 𝐷))) |
25 | 8, 24 | syl 17 | . 2 ⊢ (𝜑 → (𝐷 ∈ (SubRing‘𝐼) ↔ (𝐷 ∈ (SubGrp‘𝐼) ∧ (1r‘𝐼) ∈ 𝐷 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐼)𝑦) ∈ 𝐷))) |
26 | 11, 14, 20, 25 | mpbir3and 1341 | 1 ⊢ (𝜑 → 𝐷 ∈ (SubRing‘𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 ↾s cress 16941 +gcplusg 16962 .rcmulr 16963 0gc0g 17150 Grpcgrp 18577 invgcminusg 18578 SubGrpcsubg 18749 1rcur 19737 Ringcrg 19783 SubRingcsubrg 20020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-subg 18752 df-mgp 19721 df-ur 19738 df-ring 19785 df-subrg 20022 |
This theorem is referenced by: rngunsnply 40998 |
Copyright terms: Public domain | W3C validator |