Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > issubrngd2 | Structured version Visualization version GIF version |
Description: Prove a subring by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.) |
Ref | Expression |
---|---|
issubrngd.s | ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) |
issubrngd.z | ⊢ (𝜑 → 0 = (0g‘𝐼)) |
issubrngd.p | ⊢ (𝜑 → + = (+g‘𝐼)) |
issubrngd.ss | ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) |
issubrngd.zcl | ⊢ (𝜑 → 0 ∈ 𝐷) |
issubrngd.acl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) |
issubrngd.ncl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) |
issubrngd.o | ⊢ (𝜑 → 1 = (1r‘𝐼)) |
issubrngd.t | ⊢ (𝜑 → · = (.r‘𝐼)) |
issubrngd.ocl | ⊢ (𝜑 → 1 ∈ 𝐷) |
issubrngd.tcl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 · 𝑦) ∈ 𝐷) |
issubrngd.g | ⊢ (𝜑 → 𝐼 ∈ Ring) |
Ref | Expression |
---|---|
issubrngd2 | ⊢ (𝜑 → 𝐷 ∈ (SubRing‘𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubrngd.s | . . 3 ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) | |
2 | issubrngd.z | . . 3 ⊢ (𝜑 → 0 = (0g‘𝐼)) | |
3 | issubrngd.p | . . 3 ⊢ (𝜑 → + = (+g‘𝐼)) | |
4 | issubrngd.ss | . . 3 ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) | |
5 | issubrngd.zcl | . . 3 ⊢ (𝜑 → 0 ∈ 𝐷) | |
6 | issubrngd.acl | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) | |
7 | issubrngd.ncl | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) | |
8 | issubrngd.g | . . . 4 ⊢ (𝜑 → 𝐼 ∈ Ring) | |
9 | ringgrp 19703 | . . . 4 ⊢ (𝐼 ∈ Ring → 𝐼 ∈ Grp) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝐼 ∈ Grp) |
11 | 1, 2, 3, 4, 5, 6, 7, 10 | issubgrpd2 18686 | . 2 ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) |
12 | issubrngd.o | . . 3 ⊢ (𝜑 → 1 = (1r‘𝐼)) | |
13 | issubrngd.ocl | . . 3 ⊢ (𝜑 → 1 ∈ 𝐷) | |
14 | 12, 13 | eqeltrrd 2840 | . 2 ⊢ (𝜑 → (1r‘𝐼) ∈ 𝐷) |
15 | issubrngd.t | . . . . 5 ⊢ (𝜑 → · = (.r‘𝐼)) | |
16 | 15 | oveqdr 7283 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 · 𝑦) = (𝑥(.r‘𝐼)𝑦)) |
17 | issubrngd.tcl | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 · 𝑦) ∈ 𝐷) | |
18 | 17 | 3expb 1118 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 · 𝑦) ∈ 𝐷) |
19 | 16, 18 | eqeltrrd 2840 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥(.r‘𝐼)𝑦) ∈ 𝐷) |
20 | 19 | ralrimivva 3114 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐼)𝑦) ∈ 𝐷) |
21 | eqid 2738 | . . . 4 ⊢ (Base‘𝐼) = (Base‘𝐼) | |
22 | eqid 2738 | . . . 4 ⊢ (1r‘𝐼) = (1r‘𝐼) | |
23 | eqid 2738 | . . . 4 ⊢ (.r‘𝐼) = (.r‘𝐼) | |
24 | 21, 22, 23 | issubrg2 19959 | . . 3 ⊢ (𝐼 ∈ Ring → (𝐷 ∈ (SubRing‘𝐼) ↔ (𝐷 ∈ (SubGrp‘𝐼) ∧ (1r‘𝐼) ∈ 𝐷 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐼)𝑦) ∈ 𝐷))) |
25 | 8, 24 | syl 17 | . 2 ⊢ (𝜑 → (𝐷 ∈ (SubRing‘𝐼) ↔ (𝐷 ∈ (SubGrp‘𝐼) ∧ (1r‘𝐼) ∈ 𝐷 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐼)𝑦) ∈ 𝐷))) |
26 | 11, 14, 20, 25 | mpbir3and 1340 | 1 ⊢ (𝜑 → 𝐷 ∈ (SubRing‘𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 +gcplusg 16888 .rcmulr 16889 0gc0g 17067 Grpcgrp 18492 invgcminusg 18493 SubGrpcsubg 18664 1rcur 19652 Ringcrg 19698 SubRingcsubrg 19935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-subg 18667 df-mgp 19636 df-ur 19653 df-ring 19700 df-subrg 19937 |
This theorem is referenced by: rngunsnply 40914 |
Copyright terms: Public domain | W3C validator |