Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > issubrngd2 | Structured version Visualization version GIF version |
Description: Prove a subring by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.) |
Ref | Expression |
---|---|
issubrngd.s | ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) |
issubrngd.z | ⊢ (𝜑 → 0 = (0g‘𝐼)) |
issubrngd.p | ⊢ (𝜑 → + = (+g‘𝐼)) |
issubrngd.ss | ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) |
issubrngd.zcl | ⊢ (𝜑 → 0 ∈ 𝐷) |
issubrngd.acl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) |
issubrngd.ncl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) |
issubrngd.o | ⊢ (𝜑 → 1 = (1r‘𝐼)) |
issubrngd.t | ⊢ (𝜑 → · = (.r‘𝐼)) |
issubrngd.ocl | ⊢ (𝜑 → 1 ∈ 𝐷) |
issubrngd.tcl | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 · 𝑦) ∈ 𝐷) |
issubrngd.g | ⊢ (𝜑 → 𝐼 ∈ Ring) |
Ref | Expression |
---|---|
issubrngd2 | ⊢ (𝜑 → 𝐷 ∈ (SubRing‘𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubrngd.s | . . 3 ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) | |
2 | issubrngd.z | . . 3 ⊢ (𝜑 → 0 = (0g‘𝐼)) | |
3 | issubrngd.p | . . 3 ⊢ (𝜑 → + = (+g‘𝐼)) | |
4 | issubrngd.ss | . . 3 ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) | |
5 | issubrngd.zcl | . . 3 ⊢ (𝜑 → 0 ∈ 𝐷) | |
6 | issubrngd.acl | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) | |
7 | issubrngd.ncl | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) | |
8 | issubrngd.g | . . . 4 ⊢ (𝜑 → 𝐼 ∈ Ring) | |
9 | ringgrp 19855 | . . . 4 ⊢ (𝐼 ∈ Ring → 𝐼 ∈ Grp) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝐼 ∈ Grp) |
11 | 1, 2, 3, 4, 5, 6, 7, 10 | issubgrpd2 18838 | . 2 ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) |
12 | issubrngd.o | . . 3 ⊢ (𝜑 → 1 = (1r‘𝐼)) | |
13 | issubrngd.ocl | . . 3 ⊢ (𝜑 → 1 ∈ 𝐷) | |
14 | 12, 13 | eqeltrrd 2839 | . 2 ⊢ (𝜑 → (1r‘𝐼) ∈ 𝐷) |
15 | issubrngd.t | . . . . 5 ⊢ (𝜑 → · = (.r‘𝐼)) | |
16 | 15 | oveqdr 7341 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 · 𝑦) = (𝑥(.r‘𝐼)𝑦)) |
17 | issubrngd.tcl | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 · 𝑦) ∈ 𝐷) | |
18 | 17 | 3expb 1119 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥 · 𝑦) ∈ 𝐷) |
19 | 16, 18 | eqeltrrd 2839 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷)) → (𝑥(.r‘𝐼)𝑦) ∈ 𝐷) |
20 | 19 | ralrimivva 3194 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐼)𝑦) ∈ 𝐷) |
21 | eqid 2737 | . . . 4 ⊢ (Base‘𝐼) = (Base‘𝐼) | |
22 | eqid 2737 | . . . 4 ⊢ (1r‘𝐼) = (1r‘𝐼) | |
23 | eqid 2737 | . . . 4 ⊢ (.r‘𝐼) = (.r‘𝐼) | |
24 | 21, 22, 23 | issubrg2 20115 | . . 3 ⊢ (𝐼 ∈ Ring → (𝐷 ∈ (SubRing‘𝐼) ↔ (𝐷 ∈ (SubGrp‘𝐼) ∧ (1r‘𝐼) ∈ 𝐷 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐼)𝑦) ∈ 𝐷))) |
25 | 8, 24 | syl 17 | . 2 ⊢ (𝜑 → (𝐷 ∈ (SubRing‘𝐼) ↔ (𝐷 ∈ (SubGrp‘𝐼) ∧ (1r‘𝐼) ∈ 𝐷 ∧ ∀𝑥 ∈ 𝐷 ∀𝑦 ∈ 𝐷 (𝑥(.r‘𝐼)𝑦) ∈ 𝐷))) |
26 | 11, 14, 20, 25 | mpbir3and 1341 | 1 ⊢ (𝜑 → 𝐷 ∈ (SubRing‘𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3062 ⊆ wss 3896 ‘cfv 6463 (class class class)co 7313 Basecbs 16979 ↾s cress 17008 +gcplusg 17029 .rcmulr 17030 0gc0g 17217 Grpcgrp 18644 invgcminusg 18645 SubGrpcsubg 18816 1rcur 19804 Ringcrg 19850 SubRingcsubrg 20091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-2 12106 df-3 12107 df-sets 16932 df-slot 16950 df-ndx 16962 df-base 16980 df-ress 17009 df-plusg 17042 df-mulr 17043 df-0g 17219 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-grp 18647 df-minusg 18648 df-subg 18819 df-mgp 19788 df-ur 19805 df-ring 19852 df-subrg 20093 |
This theorem is referenced by: rngunsnply 41209 |
Copyright terms: Public domain | W3C validator |