Proof of Theorem fsumfldivdiaglem
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simprr 773 | . . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛)))) | 
| 2 |  | fsumfldivdiag.1 | . . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 3 | 2 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝐴 ∈ ℝ) | 
| 4 |  | simprl 771 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑛 ∈ (1...(⌊‘𝐴))) | 
| 5 |  | fznnfl 13902 | . . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ → (𝑛 ∈
(1...(⌊‘𝐴))
↔ (𝑛 ∈ ℕ
∧ 𝑛 ≤ 𝐴))) | 
| 6 | 3, 5 | syl 17 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑛 ∈ (1...(⌊‘𝐴)) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝐴))) | 
| 7 | 4, 6 | mpbid 232 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑛 ∈ ℕ ∧ 𝑛 ≤ 𝐴)) | 
| 8 | 7 | simpld 494 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑛 ∈ ℕ) | 
| 9 | 3, 8 | nndivred 12320 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝐴 / 𝑛) ∈ ℝ) | 
| 10 |  | fznnfl 13902 | . . . . . . 7
⊢ ((𝐴 / 𝑛) ∈ ℝ → (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (𝐴 / 𝑛)))) | 
| 11 | 9, 10 | syl 17 | . . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (𝐴 / 𝑛)))) | 
| 12 | 1, 11 | mpbid 232 | . . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑚 ∈ ℕ ∧ 𝑚 ≤ (𝐴 / 𝑛))) | 
| 13 | 12 | simpld 494 | . . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑚 ∈ ℕ) | 
| 14 | 13 | nnred 12281 | . . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑚 ∈ ℝ) | 
| 15 | 12 | simprd 495 | . . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑚 ≤ (𝐴 / 𝑛)) | 
| 16 | 3 | recnd 11289 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝐴 ∈ ℂ) | 
| 17 | 16 | mullidd 11279 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (1 · 𝐴) = 𝐴) | 
| 18 | 8 | nnge1d 12314 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 1 ≤ 𝑛) | 
| 19 |  | 1red 11262 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 1 ∈
ℝ) | 
| 20 | 8 | nnred 12281 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑛 ∈ ℝ) | 
| 21 |  | 0red 11264 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 0 ∈
ℝ) | 
| 22 | 8, 13 | nnmulcld 12319 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑛 · 𝑚) ∈ ℕ) | 
| 23 | 22 | nnred 12281 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑛 · 𝑚) ∈ ℝ) | 
| 24 | 22 | nngt0d 12315 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 0 < (𝑛 · 𝑚)) | 
| 25 | 8 | nngt0d 12315 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 0 < 𝑛) | 
| 26 |  | lemuldiv2 12149 | . . . . . . . . . . . 12
⊢ ((𝑚 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑛 ∈ ℝ ∧ 0 <
𝑛)) → ((𝑛 · 𝑚) ≤ 𝐴 ↔ 𝑚 ≤ (𝐴 / 𝑛))) | 
| 27 | 14, 3, 20, 25, 26 | syl112anc 1376 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → ((𝑛 · 𝑚) ≤ 𝐴 ↔ 𝑚 ≤ (𝐴 / 𝑛))) | 
| 28 | 15, 27 | mpbird 257 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑛 · 𝑚) ≤ 𝐴) | 
| 29 | 21, 23, 3, 24, 28 | ltletrd 11421 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 0 < 𝐴) | 
| 30 |  | lemul1 12119 | . . . . . . . . 9
⊢ ((1
∈ ℝ ∧ 𝑛
∈ ℝ ∧ (𝐴
∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ 𝑛 ↔ (1 · 𝐴) ≤ (𝑛 · 𝐴))) | 
| 31 | 19, 20, 3, 29, 30 | syl112anc 1376 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (1 ≤ 𝑛 ↔ (1 · 𝐴) ≤ (𝑛 · 𝐴))) | 
| 32 | 18, 31 | mpbid 232 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (1 · 𝐴) ≤ (𝑛 · 𝐴)) | 
| 33 | 17, 32 | eqbrtrrd 5167 | . . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝐴 ≤ (𝑛 · 𝐴)) | 
| 34 |  | ledivmul 12144 | . . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑛 ∈ ℝ ∧ 0 <
𝑛)) → ((𝐴 / 𝑛) ≤ 𝐴 ↔ 𝐴 ≤ (𝑛 · 𝐴))) | 
| 35 | 3, 3, 20, 25, 34 | syl112anc 1376 | . . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → ((𝐴 / 𝑛) ≤ 𝐴 ↔ 𝐴 ≤ (𝑛 · 𝐴))) | 
| 36 | 33, 35 | mpbird 257 | . . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝐴 / 𝑛) ≤ 𝐴) | 
| 37 | 14, 9, 3, 15, 36 | letrd 11418 | . . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑚 ≤ 𝐴) | 
| 38 |  | fznnfl 13902 | . . . . 5
⊢ (𝐴 ∈ ℝ → (𝑚 ∈
(1...(⌊‘𝐴))
↔ (𝑚 ∈ ℕ
∧ 𝑚 ≤ 𝐴))) | 
| 39 | 3, 38 | syl 17 | . . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑚 ∈ (1...(⌊‘𝐴)) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ 𝐴))) | 
| 40 | 13, 37, 39 | mpbir2and 713 | . . 3
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑚 ∈ (1...(⌊‘𝐴))) | 
| 41 | 13 | nngt0d 12315 | . . . . . 6
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 0 < 𝑚) | 
| 42 |  | lemuldiv 12148 | . . . . . 6
⊢ ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑚 ∈ ℝ ∧ 0 <
𝑚)) → ((𝑛 · 𝑚) ≤ 𝐴 ↔ 𝑛 ≤ (𝐴 / 𝑚))) | 
| 43 | 20, 3, 14, 41, 42 | syl112anc 1376 | . . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → ((𝑛 · 𝑚) ≤ 𝐴 ↔ 𝑛 ≤ (𝐴 / 𝑚))) | 
| 44 | 28, 43 | mpbid 232 | . . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑛 ≤ (𝐴 / 𝑚)) | 
| 45 | 3, 13 | nndivred 12320 | . . . . 5
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝐴 / 𝑚) ∈ ℝ) | 
| 46 |  | fznnfl 13902 | . . . . 5
⊢ ((𝐴 / 𝑚) ∈ ℝ → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑚))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑚)))) | 
| 47 | 45, 46 | syl 17 | . . . 4
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑚))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑚)))) | 
| 48 | 8, 44, 47 | mpbir2and 713 | . . 3
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑚)))) | 
| 49 | 40, 48 | jca 511 | . 2
⊢ ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑚 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑚))))) | 
| 50 | 49 | ex 412 | 1
⊢ (𝜑 → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛)))) → (𝑚 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑚)))))) |