MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumfldivdiaglem Structured version   Visualization version   GIF version

Theorem fsumfldivdiaglem 26538
Description: Lemma for fsumfldivdiag 26539. (Contributed by Mario Carneiro, 10-May-2016.)
Hypothesis
Ref Expression
fsumfldivdiag.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
fsumfldivdiaglem (𝜑 → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛)))) → (𝑚 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑚))))))
Distinct variable groups:   𝑚,𝑛,𝐴   𝜑,𝑚,𝑛

Proof of Theorem fsumfldivdiaglem
StepHypRef Expression
1 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))
2 fsumfldivdiag.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
32adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝐴 ∈ ℝ)
4 simprl 769 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑛 ∈ (1...(⌊‘𝐴)))
5 fznnfl 13767 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝑛 ∈ (1...(⌊‘𝐴)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝐴)))
63, 5syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑛 ∈ (1...(⌊‘𝐴)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝐴)))
74, 6mpbid 231 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑛 ∈ ℕ ∧ 𝑛𝐴))
87simpld 495 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑛 ∈ ℕ)
93, 8nndivred 12207 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝐴 / 𝑛) ∈ ℝ)
10 fznnfl 13767 . . . . . . 7 ((𝐴 / 𝑛) ∈ ℝ → (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (𝐴 / 𝑛))))
119, 10syl 17 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (𝐴 / 𝑛))))
121, 11mpbid 231 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑚 ∈ ℕ ∧ 𝑚 ≤ (𝐴 / 𝑛)))
1312simpld 495 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑚 ∈ ℕ)
1413nnred 12168 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑚 ∈ ℝ)
1512simprd 496 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑚 ≤ (𝐴 / 𝑛))
163recnd 11183 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝐴 ∈ ℂ)
1716mulid2d 11173 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (1 · 𝐴) = 𝐴)
188nnge1d 12201 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 1 ≤ 𝑛)
19 1red 11156 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 1 ∈ ℝ)
208nnred 12168 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑛 ∈ ℝ)
21 0red 11158 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 0 ∈ ℝ)
228, 13nnmulcld 12206 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑛 · 𝑚) ∈ ℕ)
2322nnred 12168 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑛 · 𝑚) ∈ ℝ)
2422nngt0d 12202 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 0 < (𝑛 · 𝑚))
258nngt0d 12202 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 0 < 𝑛)
26 lemuldiv2 12036 . . . . . . . . . . . 12 ((𝑚 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((𝑛 · 𝑚) ≤ 𝐴𝑚 ≤ (𝐴 / 𝑛)))
2714, 3, 20, 25, 26syl112anc 1374 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → ((𝑛 · 𝑚) ≤ 𝐴𝑚 ≤ (𝐴 / 𝑛)))
2815, 27mpbird 256 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑛 · 𝑚) ≤ 𝐴)
2921, 23, 3, 24, 28ltletrd 11315 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 0 < 𝐴)
30 lemul1 12007 . . . . . . . . 9 ((1 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ 𝑛 ↔ (1 · 𝐴) ≤ (𝑛 · 𝐴)))
3119, 20, 3, 29, 30syl112anc 1374 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (1 ≤ 𝑛 ↔ (1 · 𝐴) ≤ (𝑛 · 𝐴)))
3218, 31mpbid 231 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (1 · 𝐴) ≤ (𝑛 · 𝐴))
3317, 32eqbrtrrd 5129 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝐴 ≤ (𝑛 · 𝐴))
34 ledivmul 12031 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((𝐴 / 𝑛) ≤ 𝐴𝐴 ≤ (𝑛 · 𝐴)))
353, 3, 20, 25, 34syl112anc 1374 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → ((𝐴 / 𝑛) ≤ 𝐴𝐴 ≤ (𝑛 · 𝐴)))
3633, 35mpbird 256 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝐴 / 𝑛) ≤ 𝐴)
3714, 9, 3, 15, 36letrd 11312 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑚𝐴)
38 fznnfl 13767 . . . . 5 (𝐴 ∈ ℝ → (𝑚 ∈ (1...(⌊‘𝐴)) ↔ (𝑚 ∈ ℕ ∧ 𝑚𝐴)))
393, 38syl 17 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑚 ∈ (1...(⌊‘𝐴)) ↔ (𝑚 ∈ ℕ ∧ 𝑚𝐴)))
4013, 37, 39mpbir2and 711 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑚 ∈ (1...(⌊‘𝐴)))
4113nngt0d 12202 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 0 < 𝑚)
42 lemuldiv 12035 . . . . . 6 ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑚 ∈ ℝ ∧ 0 < 𝑚)) → ((𝑛 · 𝑚) ≤ 𝐴𝑛 ≤ (𝐴 / 𝑚)))
4320, 3, 14, 41, 42syl112anc 1374 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → ((𝑛 · 𝑚) ≤ 𝐴𝑛 ≤ (𝐴 / 𝑚)))
4428, 43mpbid 231 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑛 ≤ (𝐴 / 𝑚))
453, 13nndivred 12207 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝐴 / 𝑚) ∈ ℝ)
46 fznnfl 13767 . . . . 5 ((𝐴 / 𝑚) ∈ ℝ → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑚))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑚))))
4745, 46syl 17 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑚))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑚))))
488, 44, 47mpbir2and 711 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑚))))
4940, 48jca 512 . 2 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑚 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑚)))))
5049ex 413 1 (𝜑 → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛)))) → (𝑚 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑚))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106   class class class wbr 5105  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   · cmul 11056   < clt 11189  cle 11190   / cdiv 11812  cn 12153  ...cfz 13424  cfl 13695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fl 13697
This theorem is referenced by:  fsumfldivdiag  26539
  Copyright terms: Public domain W3C validator