MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumfldivdiaglem Structured version   Visualization version   GIF version

Theorem fsumfldivdiaglem 25693
Description: Lemma for fsumfldivdiag 25694. (Contributed by Mario Carneiro, 10-May-2016.)
Hypothesis
Ref Expression
fsumfldivdiag.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
fsumfldivdiaglem (𝜑 → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛)))) → (𝑚 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑚))))))
Distinct variable groups:   𝑚,𝑛,𝐴   𝜑,𝑚,𝑛

Proof of Theorem fsumfldivdiaglem
StepHypRef Expression
1 simprr 769 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))
2 fsumfldivdiag.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
32adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝐴 ∈ ℝ)
4 simprl 767 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑛 ∈ (1...(⌊‘𝐴)))
5 fznnfl 13218 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (𝑛 ∈ (1...(⌊‘𝐴)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝐴)))
63, 5syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑛 ∈ (1...(⌊‘𝐴)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝐴)))
74, 6mpbid 233 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑛 ∈ ℕ ∧ 𝑛𝐴))
87simpld 495 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑛 ∈ ℕ)
93, 8nndivred 11679 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝐴 / 𝑛) ∈ ℝ)
10 fznnfl 13218 . . . . . . 7 ((𝐴 / 𝑛) ∈ ℝ → (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (𝐴 / 𝑛))))
119, 10syl 17 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))) ↔ (𝑚 ∈ ℕ ∧ 𝑚 ≤ (𝐴 / 𝑛))))
121, 11mpbid 233 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑚 ∈ ℕ ∧ 𝑚 ≤ (𝐴 / 𝑛)))
1312simpld 495 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑚 ∈ ℕ)
1413nnred 11641 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑚 ∈ ℝ)
1512simprd 496 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑚 ≤ (𝐴 / 𝑛))
163recnd 10657 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝐴 ∈ ℂ)
1716mulid2d 10647 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (1 · 𝐴) = 𝐴)
188nnge1d 11673 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 1 ≤ 𝑛)
19 1red 10630 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 1 ∈ ℝ)
208nnred 11641 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑛 ∈ ℝ)
21 0red 10632 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 0 ∈ ℝ)
228, 13nnmulcld 11678 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑛 · 𝑚) ∈ ℕ)
2322nnred 11641 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑛 · 𝑚) ∈ ℝ)
2422nngt0d 11674 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 0 < (𝑛 · 𝑚))
258nngt0d 11674 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 0 < 𝑛)
26 lemuldiv2 11509 . . . . . . . . . . . 12 ((𝑚 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((𝑛 · 𝑚) ≤ 𝐴𝑚 ≤ (𝐴 / 𝑛)))
2714, 3, 20, 25, 26syl112anc 1366 . . . . . . . . . . 11 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → ((𝑛 · 𝑚) ≤ 𝐴𝑚 ≤ (𝐴 / 𝑛)))
2815, 27mpbird 258 . . . . . . . . . 10 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑛 · 𝑚) ≤ 𝐴)
2921, 23, 3, 24, 28ltletrd 10788 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 0 < 𝐴)
30 lemul1 11480 . . . . . . . . 9 ((1 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ 𝑛 ↔ (1 · 𝐴) ≤ (𝑛 · 𝐴)))
3119, 20, 3, 29, 30syl112anc 1366 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (1 ≤ 𝑛 ↔ (1 · 𝐴) ≤ (𝑛 · 𝐴)))
3218, 31mpbid 233 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (1 · 𝐴) ≤ (𝑛 · 𝐴))
3317, 32eqbrtrrd 5081 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝐴 ≤ (𝑛 · 𝐴))
34 ledivmul 11504 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → ((𝐴 / 𝑛) ≤ 𝐴𝐴 ≤ (𝑛 · 𝐴)))
353, 3, 20, 25, 34syl112anc 1366 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → ((𝐴 / 𝑛) ≤ 𝐴𝐴 ≤ (𝑛 · 𝐴)))
3633, 35mpbird 258 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝐴 / 𝑛) ≤ 𝐴)
3714, 9, 3, 15, 36letrd 10785 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑚𝐴)
38 fznnfl 13218 . . . . 5 (𝐴 ∈ ℝ → (𝑚 ∈ (1...(⌊‘𝐴)) ↔ (𝑚 ∈ ℕ ∧ 𝑚𝐴)))
393, 38syl 17 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑚 ∈ (1...(⌊‘𝐴)) ↔ (𝑚 ∈ ℕ ∧ 𝑚𝐴)))
4013, 37, 39mpbir2and 709 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑚 ∈ (1...(⌊‘𝐴)))
4113nngt0d 11674 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 0 < 𝑚)
42 lemuldiv 11508 . . . . . 6 ((𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝑚 ∈ ℝ ∧ 0 < 𝑚)) → ((𝑛 · 𝑚) ≤ 𝐴𝑛 ≤ (𝐴 / 𝑚)))
4320, 3, 14, 41, 42syl112anc 1366 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → ((𝑛 · 𝑚) ≤ 𝐴𝑛 ≤ (𝐴 / 𝑚)))
4428, 43mpbid 233 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑛 ≤ (𝐴 / 𝑚))
453, 13nndivred 11679 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝐴 / 𝑚) ∈ ℝ)
46 fznnfl 13218 . . . . 5 ((𝐴 / 𝑚) ∈ ℝ → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑚))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑚))))
4745, 46syl 17 . . . 4 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑛 ∈ (1...(⌊‘(𝐴 / 𝑚))) ↔ (𝑛 ∈ ℕ ∧ 𝑛 ≤ (𝐴 / 𝑚))))
488, 44, 47mpbir2and 709 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑚))))
4940, 48jca 512 . 2 ((𝜑 ∧ (𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛))))) → (𝑚 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑚)))))
5049ex 413 1 (𝜑 → ((𝑛 ∈ (1...(⌊‘𝐴)) ∧ 𝑚 ∈ (1...(⌊‘(𝐴 / 𝑛)))) → (𝑚 ∈ (1...(⌊‘𝐴)) ∧ 𝑛 ∈ (1...(⌊‘(𝐴 / 𝑚))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wcel 2105   class class class wbr 5057  cfv 6348  (class class class)co 7145  cr 10524  0cc0 10525  1c1 10526   · cmul 10530   < clt 10663  cle 10664   / cdiv 11285  cn 11626  ...cfz 12880  cfl 13148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-fl 13150
This theorem is referenced by:  fsumfldivdiag  25694
  Copyright terms: Public domain W3C validator