![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvsass | Structured version Visualization version GIF version |
Description: Associative law for scalar product operation. (Contributed by NM, 20-Oct-2014.) |
Ref | Expression |
---|---|
ldualvsass.f | β’ πΉ = (LFnlβπ) |
ldualvsass.r | β’ π = (Scalarβπ) |
ldualvsass.k | β’ πΎ = (Baseβπ ) |
ldualvsass.t | β’ Γ = (.rβπ ) |
ldualvsass.d | β’ π· = (LDualβπ) |
ldualvsass.s | β’ Β· = ( Β·π βπ·) |
ldualvsass.w | β’ (π β π β LMod) |
ldualvsass.x | β’ (π β π β πΎ) |
ldualvsass.y | β’ (π β π β πΎ) |
ldualvsass.g | β’ (π β πΊ β πΉ) |
Ref | Expression |
---|---|
ldualvsass | β’ (π β ((π Γ π) Β· πΊ) = (π Β· (π Β· πΊ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . 4 β’ (Baseβπ) = (Baseβπ) | |
2 | ldualvsass.r | . . . 4 β’ π = (Scalarβπ) | |
3 | ldualvsass.k | . . . 4 β’ πΎ = (Baseβπ ) | |
4 | ldualvsass.t | . . . 4 β’ Γ = (.rβπ ) | |
5 | ldualvsass.f | . . . 4 β’ πΉ = (LFnlβπ) | |
6 | ldualvsass.w | . . . 4 β’ (π β π β LMod) | |
7 | ldualvsass.y | . . . 4 β’ (π β π β πΎ) | |
8 | ldualvsass.x | . . . 4 β’ (π β π β πΎ) | |
9 | ldualvsass.g | . . . 4 β’ (π β πΊ β πΉ) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | lflvsass 38255 | . . 3 β’ (π β (πΊ βf Γ ((Baseβπ) Γ {(π Γ π)})) = ((πΊ βf Γ ((Baseβπ) Γ {π})) βf Γ ((Baseβπ) Γ {π}))) |
11 | ldualvsass.d | . . . 4 β’ π· = (LDualβπ) | |
12 | ldualvsass.s | . . . 4 β’ Β· = ( Β·π βπ·) | |
13 | 2 | lmodring 20623 | . . . . . 6 β’ (π β LMod β π β Ring) |
14 | 6, 13 | syl 17 | . . . . 5 β’ (π β π β Ring) |
15 | 3, 4 | ringcl 20145 | . . . . 5 β’ ((π β Ring β§ π β πΎ β§ π β πΎ) β (π Γ π) β πΎ) |
16 | 14, 7, 8, 15 | syl3anc 1370 | . . . 4 β’ (π β (π Γ π) β πΎ) |
17 | 5, 1, 2, 3, 4, 11, 12, 6, 16, 9 | ldualvs 38311 | . . 3 β’ (π β ((π Γ π) Β· πΊ) = (πΊ βf Γ ((Baseβπ) Γ {(π Γ π)}))) |
18 | 1, 2, 3, 4, 5, 6, 9, 7 | lflvscl 38251 | . . . 4 β’ (π β (πΊ βf Γ ((Baseβπ) Γ {π})) β πΉ) |
19 | 5, 1, 2, 3, 4, 11, 12, 6, 8, 18 | ldualvs 38311 | . . 3 β’ (π β (π Β· (πΊ βf Γ ((Baseβπ) Γ {π}))) = ((πΊ βf Γ ((Baseβπ) Γ {π})) βf Γ ((Baseβπ) Γ {π}))) |
20 | 10, 17, 19 | 3eqtr4d 2781 | . 2 β’ (π β ((π Γ π) Β· πΊ) = (π Β· (πΊ βf Γ ((Baseβπ) Γ {π})))) |
21 | 5, 1, 2, 3, 4, 11, 12, 6, 7, 9 | ldualvs 38311 | . . 3 β’ (π β (π Β· πΊ) = (πΊ βf Γ ((Baseβπ) Γ {π}))) |
22 | 21 | oveq2d 7428 | . 2 β’ (π β (π Β· (π Β· πΊ)) = (π Β· (πΊ βf Γ ((Baseβπ) Γ {π})))) |
23 | 20, 22 | eqtr4d 2774 | 1 β’ (π β ((π Γ π) Β· πΊ) = (π Β· (π Β· πΊ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 {csn 4628 Γ cxp 5674 βcfv 6543 (class class class)co 7412 βf cof 7672 Basecbs 17149 .rcmulr 17203 Scalarcsca 17205 Β·π cvsca 17206 Ringcrg 20128 LModclmod 20615 LFnlclfn 38231 LDualcld 38297 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-sca 17218 df-vsca 17219 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-mgp 20030 df-ring 20130 df-lmod 20617 df-lfl 38232 df-ldual 38298 |
This theorem is referenced by: ldualvsass2 38316 |
Copyright terms: Public domain | W3C validator |