Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvsass | Structured version Visualization version GIF version |
Description: Associative law for scalar product operation. (Contributed by NM, 20-Oct-2014.) |
Ref | Expression |
---|---|
ldualvsass.f | ⊢ 𝐹 = (LFnl‘𝑊) |
ldualvsass.r | ⊢ 𝑅 = (Scalar‘𝑊) |
ldualvsass.k | ⊢ 𝐾 = (Base‘𝑅) |
ldualvsass.t | ⊢ × = (.r‘𝑅) |
ldualvsass.d | ⊢ 𝐷 = (LDual‘𝑊) |
ldualvsass.s | ⊢ · = ( ·𝑠 ‘𝐷) |
ldualvsass.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
ldualvsass.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
ldualvsass.y | ⊢ (𝜑 → 𝑌 ∈ 𝐾) |
ldualvsass.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
ldualvsass | ⊢ (𝜑 → ((𝑌 × 𝑋) · 𝐺) = (𝑋 · (𝑌 · 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | ldualvsass.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
3 | ldualvsass.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
4 | ldualvsass.t | . . . 4 ⊢ × = (.r‘𝑅) | |
5 | ldualvsass.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
6 | ldualvsass.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
7 | ldualvsass.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐾) | |
8 | ldualvsass.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
9 | ldualvsass.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | lflvsass 37341 | . . 3 ⊢ (𝜑 → (𝐺 ∘f × ((Base‘𝑊) × {(𝑌 × 𝑋)})) = ((𝐺 ∘f × ((Base‘𝑊) × {𝑌})) ∘f × ((Base‘𝑊) × {𝑋}))) |
11 | ldualvsass.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
12 | ldualvsass.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝐷) | |
13 | 2 | lmodring 20229 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
14 | 6, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
15 | 3, 4 | ringcl 19887 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐾 ∧ 𝑋 ∈ 𝐾) → (𝑌 × 𝑋) ∈ 𝐾) |
16 | 14, 7, 8, 15 | syl3anc 1370 | . . . 4 ⊢ (𝜑 → (𝑌 × 𝑋) ∈ 𝐾) |
17 | 5, 1, 2, 3, 4, 11, 12, 6, 16, 9 | ldualvs 37397 | . . 3 ⊢ (𝜑 → ((𝑌 × 𝑋) · 𝐺) = (𝐺 ∘f × ((Base‘𝑊) × {(𝑌 × 𝑋)}))) |
18 | 1, 2, 3, 4, 5, 6, 9, 7 | lflvscl 37337 | . . . 4 ⊢ (𝜑 → (𝐺 ∘f × ((Base‘𝑊) × {𝑌})) ∈ 𝐹) |
19 | 5, 1, 2, 3, 4, 11, 12, 6, 8, 18 | ldualvs 37397 | . . 3 ⊢ (𝜑 → (𝑋 · (𝐺 ∘f × ((Base‘𝑊) × {𝑌}))) = ((𝐺 ∘f × ((Base‘𝑊) × {𝑌})) ∘f × ((Base‘𝑊) × {𝑋}))) |
20 | 10, 17, 19 | 3eqtr4d 2786 | . 2 ⊢ (𝜑 → ((𝑌 × 𝑋) · 𝐺) = (𝑋 · (𝐺 ∘f × ((Base‘𝑊) × {𝑌})))) |
21 | 5, 1, 2, 3, 4, 11, 12, 6, 7, 9 | ldualvs 37397 | . . 3 ⊢ (𝜑 → (𝑌 · 𝐺) = (𝐺 ∘f × ((Base‘𝑊) × {𝑌}))) |
22 | 21 | oveq2d 7345 | . 2 ⊢ (𝜑 → (𝑋 · (𝑌 · 𝐺)) = (𝑋 · (𝐺 ∘f × ((Base‘𝑊) × {𝑌})))) |
23 | 20, 22 | eqtr4d 2779 | 1 ⊢ (𝜑 → ((𝑌 × 𝑋) · 𝐺) = (𝑋 · (𝑌 · 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {csn 4572 × cxp 5612 ‘cfv 6473 (class class class)co 7329 ∘f cof 7585 Basecbs 17001 .rcmulr 17052 Scalarcsca 17054 ·𝑠 cvsca 17055 Ringcrg 19870 LModclmod 20221 LFnlclfn 37317 LDualcld 37383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-tp 4577 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-of 7587 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-map 8680 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-n0 12327 df-z 12413 df-uz 12676 df-fz 13333 df-struct 16937 df-sets 16954 df-slot 16972 df-ndx 16984 df-base 17002 df-plusg 17064 df-sca 17067 df-vsca 17068 df-mgm 18415 df-sgrp 18464 df-mnd 18475 df-grp 18668 df-mgp 19808 df-ring 19872 df-lmod 20223 df-lfl 37318 df-ldual 37384 |
This theorem is referenced by: ldualvsass2 37402 |
Copyright terms: Public domain | W3C validator |