| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ldualvsass | Structured version Visualization version GIF version | ||
| Description: Associative law for scalar product operation. (Contributed by NM, 20-Oct-2014.) |
| Ref | Expression |
|---|---|
| ldualvsass.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| ldualvsass.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| ldualvsass.k | ⊢ 𝐾 = (Base‘𝑅) |
| ldualvsass.t | ⊢ × = (.r‘𝑅) |
| ldualvsass.d | ⊢ 𝐷 = (LDual‘𝑊) |
| ldualvsass.s | ⊢ · = ( ·𝑠 ‘𝐷) |
| ldualvsass.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| ldualvsass.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| ldualvsass.y | ⊢ (𝜑 → 𝑌 ∈ 𝐾) |
| ldualvsass.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| ldualvsass | ⊢ (𝜑 → ((𝑌 × 𝑋) · 𝐺) = (𝑋 · (𝑌 · 𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 2 | ldualvsass.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 3 | ldualvsass.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 4 | ldualvsass.t | . . . 4 ⊢ × = (.r‘𝑅) | |
| 5 | ldualvsass.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 6 | ldualvsass.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 7 | ldualvsass.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐾) | |
| 8 | ldualvsass.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 9 | ldualvsass.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | lflvsass 39099 | . . 3 ⊢ (𝜑 → (𝐺 ∘f × ((Base‘𝑊) × {(𝑌 × 𝑋)})) = ((𝐺 ∘f × ((Base‘𝑊) × {𝑌})) ∘f × ((Base‘𝑊) × {𝑋}))) |
| 11 | ldualvsass.d | . . . 4 ⊢ 𝐷 = (LDual‘𝑊) | |
| 12 | ldualvsass.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝐷) | |
| 13 | 2 | lmodring 20825 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
| 14 | 6, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 15 | 3, 4 | ringcl 20210 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝐾 ∧ 𝑋 ∈ 𝐾) → (𝑌 × 𝑋) ∈ 𝐾) |
| 16 | 14, 7, 8, 15 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑌 × 𝑋) ∈ 𝐾) |
| 17 | 5, 1, 2, 3, 4, 11, 12, 6, 16, 9 | ldualvs 39155 | . . 3 ⊢ (𝜑 → ((𝑌 × 𝑋) · 𝐺) = (𝐺 ∘f × ((Base‘𝑊) × {(𝑌 × 𝑋)}))) |
| 18 | 1, 2, 3, 4, 5, 6, 9, 7 | lflvscl 39095 | . . . 4 ⊢ (𝜑 → (𝐺 ∘f × ((Base‘𝑊) × {𝑌})) ∈ 𝐹) |
| 19 | 5, 1, 2, 3, 4, 11, 12, 6, 8, 18 | ldualvs 39155 | . . 3 ⊢ (𝜑 → (𝑋 · (𝐺 ∘f × ((Base‘𝑊) × {𝑌}))) = ((𝐺 ∘f × ((Base‘𝑊) × {𝑌})) ∘f × ((Base‘𝑊) × {𝑋}))) |
| 20 | 10, 17, 19 | 3eqtr4d 2780 | . 2 ⊢ (𝜑 → ((𝑌 × 𝑋) · 𝐺) = (𝑋 · (𝐺 ∘f × ((Base‘𝑊) × {𝑌})))) |
| 21 | 5, 1, 2, 3, 4, 11, 12, 6, 7, 9 | ldualvs 39155 | . . 3 ⊢ (𝜑 → (𝑌 · 𝐺) = (𝐺 ∘f × ((Base‘𝑊) × {𝑌}))) |
| 22 | 21 | oveq2d 7421 | . 2 ⊢ (𝜑 → (𝑋 · (𝑌 · 𝐺)) = (𝑋 · (𝐺 ∘f × ((Base‘𝑊) × {𝑌})))) |
| 23 | 20, 22 | eqtr4d 2773 | 1 ⊢ (𝜑 → ((𝑌 × 𝑋) · 𝐺) = (𝑋 · (𝑌 · 𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {csn 4601 × cxp 5652 ‘cfv 6531 (class class class)co 7405 ∘f cof 7669 Basecbs 17228 .rcmulr 17272 Scalarcsca 17274 ·𝑠 cvsca 17275 Ringcrg 20193 LModclmod 20817 LFnlclfn 39075 LDualcld 39141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-sca 17287 df-vsca 17288 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-mgp 20101 df-ring 20195 df-lmod 20819 df-lfl 39076 df-ldual 39142 |
| This theorem is referenced by: ldualvsass2 39160 |
| Copyright terms: Public domain | W3C validator |