Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem47 Structured version   Visualization version   GIF version

Theorem fourierdlem47 46197
Description: For 𝑟 large enough, the final expression is less than the given positive 𝐸. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem47.ibl (𝜑 → (𝑥𝐼𝐹) ∈ 𝐿1)
fourierdlem47.iblmul ((𝜑𝑟 ∈ ℝ) → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
fourierdlem47.f ((𝜑𝑥𝐼) → 𝐹 ∈ ℂ)
fourierdlem47.g (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℂ) → 𝐺 ∈ ℂ)
fourierdlem47.absg (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘𝐺) ≤ 1)
fourierdlem47.a (𝜑𝐴 ∈ ℂ)
fourierdlem47.x 𝑋 = (abs‘𝐴)
fourierdlem47.c (𝜑𝐶 ∈ ℂ)
fourierdlem47.y 𝑌 = (abs‘𝐶)
fourierdlem47.z 𝑍 = ∫𝐼(abs‘𝐹) d𝑥
fourierdlem47.e (𝜑𝐸 ∈ ℝ+)
fourierdlem47.b ((𝜑𝑟 ∈ ℂ) → 𝐵 ∈ ℂ)
fourierdlem47.absb ((𝜑𝑟 ∈ ℝ) → (abs‘𝐵) ≤ 1)
fourierdlem47.d ((𝜑𝑟 ∈ ℂ) → 𝐷 ∈ ℂ)
fourierdlem47.absd ((𝜑𝑟 ∈ ℝ) → (abs‘𝐷) ≤ 1)
fourierdlem47.m 𝑀 = ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1)
Assertion
Ref Expression
fourierdlem47 (𝜑 → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
Distinct variable groups:   𝐴,𝑚   𝐵,𝑚   𝐶,𝑚   𝐷,𝑚   𝑚,𝐸   𝑚,𝐹   𝑚,𝐺   𝑚,𝐼,𝑥   𝑚,𝑀,𝑟,𝑥   𝜑,𝑟,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐴(𝑥,𝑟)   𝐵(𝑥,𝑟)   𝐶(𝑥,𝑟)   𝐷(𝑥,𝑟)   𝐸(𝑥,𝑟)   𝐹(𝑥,𝑟)   𝐺(𝑥,𝑟)   𝐼(𝑟)   𝑋(𝑥,𝑚,𝑟)   𝑌(𝑥,𝑚,𝑟)   𝑍(𝑥,𝑚,𝑟)

Proof of Theorem fourierdlem47
StepHypRef Expression
1 fourierdlem47.m . . 3 𝑀 = ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1)
2 fourierdlem47.x . . . . . . . . . . 11 𝑋 = (abs‘𝐴)
3 fourierdlem47.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
43abscld 15346 . . . . . . . . . . 11 (𝜑 → (abs‘𝐴) ∈ ℝ)
52, 4eqeltrid 2835 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
6 fourierdlem47.y . . . . . . . . . . 11 𝑌 = (abs‘𝐶)
7 fourierdlem47.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
87abscld 15346 . . . . . . . . . . 11 (𝜑 → (abs‘𝐶) ∈ ℝ)
96, 8eqeltrid 2835 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
105, 9readdcld 11141 . . . . . . . . 9 (𝜑 → (𝑋 + 𝑌) ∈ ℝ)
11 fourierdlem47.z . . . . . . . . . 10 𝑍 = ∫𝐼(abs‘𝐹) d𝑥
12 fourierdlem47.f . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → 𝐹 ∈ ℂ)
1312abscld 15346 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (abs‘𝐹) ∈ ℝ)
14 fourierdlem47.ibl . . . . . . . . . . . 12 (𝜑 → (𝑥𝐼𝐹) ∈ 𝐿1)
1512, 14iblabs 25758 . . . . . . . . . . 11 (𝜑 → (𝑥𝐼 ↦ (abs‘𝐹)) ∈ 𝐿1)
1613, 15itgrecl 25727 . . . . . . . . . 10 (𝜑 → ∫𝐼(abs‘𝐹) d𝑥 ∈ ℝ)
1711, 16eqeltrid 2835 . . . . . . . . 9 (𝜑𝑍 ∈ ℝ)
1810, 17readdcld 11141 . . . . . . . 8 (𝜑 → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ)
19 fourierdlem47.e . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
2019rpred 12934 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
2119rpne0d 12939 . . . . . . . 8 (𝜑𝐸 ≠ 0)
2218, 20, 21redivcld 11949 . . . . . . 7 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ)
23 1red 11113 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
2422, 23readdcld 11141 . . . . . 6 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ)
2524flcld 13702 . . . . 5 (𝜑 → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℤ)
26 0red 11115 . . . . . 6 (𝜑 → 0 ∈ ℝ)
27 reflcl 13700 . . . . . . 7 (((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℝ)
2824, 27syl 17 . . . . . 6 (𝜑 → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℝ)
29 0lt1 11639 . . . . . . 7 0 < 1
3029a1i 11 . . . . . 6 (𝜑 → 0 < 1)
313absge0d 15354 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (abs‘𝐴))
3231, 2breqtrrdi 5133 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝑋)
337absge0d 15354 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (abs‘𝐶))
3433, 6breqtrrdi 5133 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝑌)
355, 9, 32, 34addge0d 11693 . . . . . . . . . . 11 (𝜑 → 0 ≤ (𝑋 + 𝑌))
3612absge0d 15354 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → 0 ≤ (abs‘𝐹))
3715, 13, 36itgge0 25740 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ∫𝐼(abs‘𝐹) d𝑥)
3837, 11breqtrrdi 5133 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝑍)
3910, 17, 35, 38addge0d 11693 . . . . . . . . . 10 (𝜑 → 0 ≤ ((𝑋 + 𝑌) + 𝑍))
4018, 19, 39divge0d 12974 . . . . . . . . 9 (𝜑 → 0 ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸))
41 flge0nn0 13724 . . . . . . . . 9 (((((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ ∧ 0 ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸)) → (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) ∈ ℕ0)
4222, 40, 41syl2anc 584 . . . . . . . 8 (𝜑 → (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) ∈ ℕ0)
43 nn0addge1 12427 . . . . . . . 8 ((1 ∈ ℝ ∧ (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) ∈ ℕ0) → 1 ≤ (1 + (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸))))
4423, 42, 43syl2anc 584 . . . . . . 7 (𝜑 → 1 ≤ (1 + (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸))))
45 1z 12502 . . . . . . . . 9 1 ∈ ℤ
46 fladdz 13729 . . . . . . . . 9 (((((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
4722, 45, 46sylancl 586 . . . . . . . 8 (𝜑 → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
4842nn0cnd 12444 . . . . . . . . 9 (𝜑 → (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) ∈ ℂ)
4923recnd 11140 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
5048, 49addcomd 11315 . . . . . . . 8 (𝜑 → ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1) = (1 + (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸))))
5147, 50eqtr2d 2767 . . . . . . 7 (𝜑 → (1 + (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸))) = (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
5244, 51breqtrd 5117 . . . . . 6 (𝜑 → 1 ≤ (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
5326, 23, 28, 30, 52ltletrd 11273 . . . . 5 (𝜑 → 0 < (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
54 elnnz 12478 . . . . 5 ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℕ ↔ ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℤ ∧ 0 < (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))))
5525, 53, 54sylanbrc 583 . . . 4 (𝜑 → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℕ)
5655peano2nnd 12142 . . 3 (𝜑 → ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1) ∈ ℕ)
571, 56eqeltrid 2835 . 2 (𝜑𝑀 ∈ ℕ)
58 elioore 13275 . . . . 5 (𝑟 ∈ (𝑀(,)+∞) → 𝑟 ∈ ℝ)
59 fourierdlem47.iblmul . . . . 5 ((𝜑𝑟 ∈ ℝ) → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
6058, 59sylan2 593 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
6112adantlr 715 . . . 4 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝐹 ∈ ℂ)
62 simpll 766 . . . . 5 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝜑)
63 simpr 484 . . . . 5 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝑥𝐼)
6458ad2antlr 727 . . . . . 6 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝑟 ∈ ℝ)
6564recnd 11140 . . . . 5 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝑟 ∈ ℂ)
66 fourierdlem47.g . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℂ) → 𝐺 ∈ ℂ)
6762, 63, 65, 66syl21anc 837 . . . 4 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝐺 ∈ ℂ)
683adantr 480 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐴 ∈ ℂ)
697adantr 480 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐶 ∈ ℂ)
70 eqid 2731 . . . 4 (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) = (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)
7119adantr 480 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐸 ∈ ℝ+)
7258adantl 481 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑟 ∈ ℝ)
732eqcomi 2740 . . . . . . . . . 10 (abs‘𝐴) = 𝑋
746eqcomi 2740 . . . . . . . . . 10 (abs‘𝐶) = 𝑌
7573, 74oveq12i 7358 . . . . . . . . 9 ((abs‘𝐴) + (abs‘𝐶)) = (𝑋 + 𝑌)
7675oveq1i 7356 . . . . . . . 8 (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) = ((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥))
774adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘𝐴) ∈ ℝ)
788adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘𝐶) ∈ ℝ)
7977, 78readdcld 11141 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((abs‘𝐴) + (abs‘𝐶)) ∈ ℝ)
8067negcld 11459 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → -𝐺 ∈ ℂ)
8161, 80mulcld 11132 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (𝐹 · -𝐺) ∈ ℂ)
8281, 60itgcl 25713 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ∫𝐼(𝐹 · -𝐺) d𝑥 ∈ ℂ)
8382abscld 15346 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) ∈ ℝ)
8479, 83readdcld 11141 . . . . . . . 8 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
8576, 84eqeltrrid 2836 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
8620adantr 480 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐸 ∈ ℝ)
8721adantr 480 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐸 ≠ 0)
8885, 86, 87redivcld 11949 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) ∈ ℝ)
89 1red 11113 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 1 ∈ ℝ)
9088, 89readdcld 11141 . . . . 5 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) ∈ ℝ)
912, 77eqeltrid 2835 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑋 ∈ ℝ)
926, 78eqeltrid 2835 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑌 ∈ ℝ)
9391, 92readdcld 11141 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (𝑋 + 𝑌) ∈ ℝ)
9417adantr 480 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑍 ∈ ℝ)
9593, 94readdcld 11141 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ)
9695, 86, 87redivcld 11949 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ)
9796, 89readdcld 11141 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ)
9897, 27syl 17 . . . . . . . 8 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℝ)
9998, 89readdcld 11141 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1) ∈ ℝ)
1001, 99eqeltrid 2835 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑀 ∈ ℝ)
10181abscld 15346 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘(𝐹 · -𝐺)) ∈ ℝ)
10281, 60iblabs 25758 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (𝑥𝐼 ↦ (abs‘(𝐹 · -𝐺))) ∈ 𝐿1)
103101, 102itgrecl 25727 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ∫𝐼(abs‘(𝐹 · -𝐺)) d𝑥 ∈ ℝ)
10481, 60itgabs 25764 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) ≤ ∫𝐼(abs‘(𝐹 · -𝐺)) d𝑥)
10515adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (𝑥𝐼 ↦ (abs‘𝐹)) ∈ 𝐿1)
10661abscld 15346 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘𝐹) ∈ ℝ)
10761, 80absmuld 15364 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘(𝐹 · -𝐺)) = ((abs‘𝐹) · (abs‘-𝐺)))
10880abscld 15346 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘-𝐺) ∈ ℝ)
109 1red 11113 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 1 ∈ ℝ)
11061absge0d 15354 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 0 ≤ (abs‘𝐹))
111 recn 11096 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ ℝ → 𝑟 ∈ ℂ)
112111, 66sylan2 593 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → 𝐺 ∈ ℂ)
113112absnegd 15359 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘-𝐺) = (abs‘𝐺))
114 fourierdlem47.absg . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘𝐺) ≤ 1)
115113, 114eqbrtrd 5113 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘-𝐺) ≤ 1)
11662, 63, 64, 115syl21anc 837 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘-𝐺) ≤ 1)
117108, 109, 106, 110, 116lemul2ad 12062 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → ((abs‘𝐹) · (abs‘-𝐺)) ≤ ((abs‘𝐹) · 1))
118106recnd 11140 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘𝐹) ∈ ℂ)
119118mulridd 11129 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → ((abs‘𝐹) · 1) = (abs‘𝐹))
120117, 119breqtrd 5117 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → ((abs‘𝐹) · (abs‘-𝐺)) ≤ (abs‘𝐹))
121107, 120eqbrtrd 5113 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘(𝐹 · -𝐺)) ≤ (abs‘𝐹))
122102, 105, 101, 106, 121itgle 25739 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ∫𝐼(abs‘(𝐹 · -𝐺)) d𝑥 ≤ ∫𝐼(abs‘𝐹) d𝑥)
123122, 11breqtrrdi 5133 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ∫𝐼(abs‘(𝐹 · -𝐺)) d𝑥𝑍)
12483, 103, 94, 104, 123letrd 11270 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) ≤ 𝑍)
12583, 94, 93, 124leadd2dd 11732 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ≤ ((𝑋 + 𝑌) + 𝑍))
12685, 95, 71, 125lediv1dd 12992 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸))
127 flltp1 13704 . . . . . . . . . . 11 ((((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
12896, 127syl 17 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
12996, 45, 46sylancl 586 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
130128, 129breqtrrd 5119 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
13188, 96, 98, 126, 130lelttrd 11271 . . . . . . . 8 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) < (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
13288, 98, 89, 131ltadd1dd 11728 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) < ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1))
133132, 1breqtrrdi 5133 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) < 𝑀)
134100rexrd 11162 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑀 ∈ ℝ*)
135 pnfxr 11166 . . . . . . . 8 +∞ ∈ ℝ*
136135a1i 11 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → +∞ ∈ ℝ*)
137 simpr 484 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑟 ∈ (𝑀(,)+∞))
138 ioogtlb 45541 . . . . . . 7 ((𝑀 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑟 ∈ (𝑀(,)+∞)) → 𝑀 < 𝑟)
139134, 136, 137, 138syl3anc 1373 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑀 < 𝑟)
14090, 100, 72, 133, 139lttrd 11274 . . . . 5 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) < 𝑟)
14190, 72, 140ltled 11261 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) ≤ 𝑟)
14272recnd 11140 . . . . 5 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑟 ∈ ℂ)
143 fourierdlem47.b . . . . 5 ((𝜑𝑟 ∈ ℂ) → 𝐵 ∈ ℂ)
144142, 143syldan 591 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐵 ∈ ℂ)
145 fourierdlem47.absb . . . . 5 ((𝜑𝑟 ∈ ℝ) → (abs‘𝐵) ≤ 1)
14658, 145sylan2 593 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘𝐵) ≤ 1)
147 fourierdlem47.d . . . . 5 ((𝜑𝑟 ∈ ℂ) → 𝐷 ∈ ℂ)
148142, 147syldan 591 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐷 ∈ ℂ)
149 fourierdlem47.absd . . . . 5 ((𝜑𝑟 ∈ ℝ) → (abs‘𝐷) ≤ 1)
15058, 149sylan2 593 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘𝐷) ≤ 1)
15160, 61, 67, 68, 2, 69, 6, 70, 71, 72, 141, 144, 146, 148, 150fourierdlem30 46181 . . 3 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
152151ralrimiva 3124 . 2 (𝜑 → ∀𝑟 ∈ (𝑀(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
153 oveq1 7353 . . . 4 (𝑚 = 𝑀 → (𝑚(,)+∞) = (𝑀(,)+∞))
154153raleqdv 3292 . . 3 (𝑚 = 𝑀 → (∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸 ↔ ∀𝑟 ∈ (𝑀(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸))
155154rspcev 3577 . 2 ((𝑀 ∈ ℕ ∧ ∀𝑟 ∈ (𝑀(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
15657, 152, 155syl2anc 584 1 (𝜑 → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056   class class class wbr 5091  cmpt 5172  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  +∞cpnf 11143  *cxr 11145   < clt 11146  cle 11147  cmin 11344  -cneg 11345   / cdiv 11774  cn 12125  0cn0 12381  cz 12468  +crp 12890  (,)cioo 13245  cfl 13694  abscabs 15141  𝐿1cibl 25546  citg 25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cc 10326  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-disj 5059  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19230  df-cmn 19695  df-psmet 21284  df-xmet 21285  df-met 21286  df-bl 21287  df-mopn 21288  df-cnfld 21293  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-cn 23143  df-cnp 23144  df-cmp 23303  df-tx 23478  df-hmeo 23671  df-xms 24236  df-ms 24237  df-tms 24238  df-cncf 24799  df-ovol 25393  df-vol 25394  df-mbf 25548  df-itg1 25549  df-itg2 25550  df-ibl 25551  df-itg 25552  df-0p 25599
This theorem is referenced by:  fourierdlem73  46223
  Copyright terms: Public domain W3C validator