Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem47 Structured version   Visualization version   GIF version

Theorem fourierdlem47 46138
Description: For 𝑟 large enough, the final expression is less than the given positive 𝐸. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem47.ibl (𝜑 → (𝑥𝐼𝐹) ∈ 𝐿1)
fourierdlem47.iblmul ((𝜑𝑟 ∈ ℝ) → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
fourierdlem47.f ((𝜑𝑥𝐼) → 𝐹 ∈ ℂ)
fourierdlem47.g (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℂ) → 𝐺 ∈ ℂ)
fourierdlem47.absg (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘𝐺) ≤ 1)
fourierdlem47.a (𝜑𝐴 ∈ ℂ)
fourierdlem47.x 𝑋 = (abs‘𝐴)
fourierdlem47.c (𝜑𝐶 ∈ ℂ)
fourierdlem47.y 𝑌 = (abs‘𝐶)
fourierdlem47.z 𝑍 = ∫𝐼(abs‘𝐹) d𝑥
fourierdlem47.e (𝜑𝐸 ∈ ℝ+)
fourierdlem47.b ((𝜑𝑟 ∈ ℂ) → 𝐵 ∈ ℂ)
fourierdlem47.absb ((𝜑𝑟 ∈ ℝ) → (abs‘𝐵) ≤ 1)
fourierdlem47.d ((𝜑𝑟 ∈ ℂ) → 𝐷 ∈ ℂ)
fourierdlem47.absd ((𝜑𝑟 ∈ ℝ) → (abs‘𝐷) ≤ 1)
fourierdlem47.m 𝑀 = ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1)
Assertion
Ref Expression
fourierdlem47 (𝜑 → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
Distinct variable groups:   𝐴,𝑚   𝐵,𝑚   𝐶,𝑚   𝐷,𝑚   𝑚,𝐸   𝑚,𝐹   𝑚,𝐺   𝑚,𝐼,𝑥   𝑚,𝑀,𝑟,𝑥   𝜑,𝑟,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐴(𝑥,𝑟)   𝐵(𝑥,𝑟)   𝐶(𝑥,𝑟)   𝐷(𝑥,𝑟)   𝐸(𝑥,𝑟)   𝐹(𝑥,𝑟)   𝐺(𝑥,𝑟)   𝐼(𝑟)   𝑋(𝑥,𝑚,𝑟)   𝑌(𝑥,𝑚,𝑟)   𝑍(𝑥,𝑚,𝑟)

Proof of Theorem fourierdlem47
StepHypRef Expression
1 fourierdlem47.m . . 3 𝑀 = ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1)
2 fourierdlem47.x . . . . . . . . . . 11 𝑋 = (abs‘𝐴)
3 fourierdlem47.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
43abscld 15364 . . . . . . . . . . 11 (𝜑 → (abs‘𝐴) ∈ ℝ)
52, 4eqeltrid 2832 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
6 fourierdlem47.y . . . . . . . . . . 11 𝑌 = (abs‘𝐶)
7 fourierdlem47.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
87abscld 15364 . . . . . . . . . . 11 (𝜑 → (abs‘𝐶) ∈ ℝ)
96, 8eqeltrid 2832 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
105, 9readdcld 11163 . . . . . . . . 9 (𝜑 → (𝑋 + 𝑌) ∈ ℝ)
11 fourierdlem47.z . . . . . . . . . 10 𝑍 = ∫𝐼(abs‘𝐹) d𝑥
12 fourierdlem47.f . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → 𝐹 ∈ ℂ)
1312abscld 15364 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (abs‘𝐹) ∈ ℝ)
14 fourierdlem47.ibl . . . . . . . . . . . 12 (𝜑 → (𝑥𝐼𝐹) ∈ 𝐿1)
1512, 14iblabs 25746 . . . . . . . . . . 11 (𝜑 → (𝑥𝐼 ↦ (abs‘𝐹)) ∈ 𝐿1)
1613, 15itgrecl 25715 . . . . . . . . . 10 (𝜑 → ∫𝐼(abs‘𝐹) d𝑥 ∈ ℝ)
1711, 16eqeltrid 2832 . . . . . . . . 9 (𝜑𝑍 ∈ ℝ)
1810, 17readdcld 11163 . . . . . . . 8 (𝜑 → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ)
19 fourierdlem47.e . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
2019rpred 12955 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
2119rpne0d 12960 . . . . . . . 8 (𝜑𝐸 ≠ 0)
2218, 20, 21redivcld 11970 . . . . . . 7 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ)
23 1red 11135 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
2422, 23readdcld 11163 . . . . . 6 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ)
2524flcld 13720 . . . . 5 (𝜑 → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℤ)
26 0red 11137 . . . . . 6 (𝜑 → 0 ∈ ℝ)
27 reflcl 13718 . . . . . . 7 (((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℝ)
2824, 27syl 17 . . . . . 6 (𝜑 → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℝ)
29 0lt1 11660 . . . . . . 7 0 < 1
3029a1i 11 . . . . . 6 (𝜑 → 0 < 1)
313absge0d 15372 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (abs‘𝐴))
3231, 2breqtrrdi 5137 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝑋)
337absge0d 15372 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (abs‘𝐶))
3433, 6breqtrrdi 5137 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝑌)
355, 9, 32, 34addge0d 11714 . . . . . . . . . . 11 (𝜑 → 0 ≤ (𝑋 + 𝑌))
3612absge0d 15372 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → 0 ≤ (abs‘𝐹))
3715, 13, 36itgge0 25728 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ∫𝐼(abs‘𝐹) d𝑥)
3837, 11breqtrrdi 5137 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝑍)
3910, 17, 35, 38addge0d 11714 . . . . . . . . . 10 (𝜑 → 0 ≤ ((𝑋 + 𝑌) + 𝑍))
4018, 19, 39divge0d 12995 . . . . . . . . 9 (𝜑 → 0 ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸))
41 flge0nn0 13742 . . . . . . . . 9 (((((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ ∧ 0 ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸)) → (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) ∈ ℕ0)
4222, 40, 41syl2anc 584 . . . . . . . 8 (𝜑 → (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) ∈ ℕ0)
43 nn0addge1 12448 . . . . . . . 8 ((1 ∈ ℝ ∧ (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) ∈ ℕ0) → 1 ≤ (1 + (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸))))
4423, 42, 43syl2anc 584 . . . . . . 7 (𝜑 → 1 ≤ (1 + (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸))))
45 1z 12523 . . . . . . . . 9 1 ∈ ℤ
46 fladdz 13747 . . . . . . . . 9 (((((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
4722, 45, 46sylancl 586 . . . . . . . 8 (𝜑 → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
4842nn0cnd 12465 . . . . . . . . 9 (𝜑 → (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) ∈ ℂ)
4923recnd 11162 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
5048, 49addcomd 11336 . . . . . . . 8 (𝜑 → ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1) = (1 + (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸))))
5147, 50eqtr2d 2765 . . . . . . 7 (𝜑 → (1 + (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸))) = (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
5244, 51breqtrd 5121 . . . . . 6 (𝜑 → 1 ≤ (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
5326, 23, 28, 30, 52ltletrd 11294 . . . . 5 (𝜑 → 0 < (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
54 elnnz 12499 . . . . 5 ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℕ ↔ ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℤ ∧ 0 < (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))))
5525, 53, 54sylanbrc 583 . . . 4 (𝜑 → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℕ)
5655peano2nnd 12163 . . 3 (𝜑 → ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1) ∈ ℕ)
571, 56eqeltrid 2832 . 2 (𝜑𝑀 ∈ ℕ)
58 elioore 13296 . . . . 5 (𝑟 ∈ (𝑀(,)+∞) → 𝑟 ∈ ℝ)
59 fourierdlem47.iblmul . . . . 5 ((𝜑𝑟 ∈ ℝ) → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
6058, 59sylan2 593 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
6112adantlr 715 . . . 4 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝐹 ∈ ℂ)
62 simpll 766 . . . . 5 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝜑)
63 simpr 484 . . . . 5 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝑥𝐼)
6458ad2antlr 727 . . . . . 6 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝑟 ∈ ℝ)
6564recnd 11162 . . . . 5 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝑟 ∈ ℂ)
66 fourierdlem47.g . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℂ) → 𝐺 ∈ ℂ)
6762, 63, 65, 66syl21anc 837 . . . 4 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝐺 ∈ ℂ)
683adantr 480 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐴 ∈ ℂ)
697adantr 480 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐶 ∈ ℂ)
70 eqid 2729 . . . 4 (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) = (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)
7119adantr 480 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐸 ∈ ℝ+)
7258adantl 481 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑟 ∈ ℝ)
732eqcomi 2738 . . . . . . . . . 10 (abs‘𝐴) = 𝑋
746eqcomi 2738 . . . . . . . . . 10 (abs‘𝐶) = 𝑌
7573, 74oveq12i 7365 . . . . . . . . 9 ((abs‘𝐴) + (abs‘𝐶)) = (𝑋 + 𝑌)
7675oveq1i 7363 . . . . . . . 8 (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) = ((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥))
774adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘𝐴) ∈ ℝ)
788adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘𝐶) ∈ ℝ)
7977, 78readdcld 11163 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((abs‘𝐴) + (abs‘𝐶)) ∈ ℝ)
8067negcld 11480 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → -𝐺 ∈ ℂ)
8161, 80mulcld 11154 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (𝐹 · -𝐺) ∈ ℂ)
8281, 60itgcl 25701 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ∫𝐼(𝐹 · -𝐺) d𝑥 ∈ ℂ)
8382abscld 15364 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) ∈ ℝ)
8479, 83readdcld 11163 . . . . . . . 8 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
8576, 84eqeltrrid 2833 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
8620adantr 480 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐸 ∈ ℝ)
8721adantr 480 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐸 ≠ 0)
8885, 86, 87redivcld 11970 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) ∈ ℝ)
89 1red 11135 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 1 ∈ ℝ)
9088, 89readdcld 11163 . . . . 5 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) ∈ ℝ)
912, 77eqeltrid 2832 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑋 ∈ ℝ)
926, 78eqeltrid 2832 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑌 ∈ ℝ)
9391, 92readdcld 11163 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (𝑋 + 𝑌) ∈ ℝ)
9417adantr 480 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑍 ∈ ℝ)
9593, 94readdcld 11163 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ)
9695, 86, 87redivcld 11970 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ)
9796, 89readdcld 11163 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ)
9897, 27syl 17 . . . . . . . 8 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℝ)
9998, 89readdcld 11163 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1) ∈ ℝ)
1001, 99eqeltrid 2832 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑀 ∈ ℝ)
10181abscld 15364 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘(𝐹 · -𝐺)) ∈ ℝ)
10281, 60iblabs 25746 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (𝑥𝐼 ↦ (abs‘(𝐹 · -𝐺))) ∈ 𝐿1)
103101, 102itgrecl 25715 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ∫𝐼(abs‘(𝐹 · -𝐺)) d𝑥 ∈ ℝ)
10481, 60itgabs 25752 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) ≤ ∫𝐼(abs‘(𝐹 · -𝐺)) d𝑥)
10515adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (𝑥𝐼 ↦ (abs‘𝐹)) ∈ 𝐿1)
10661abscld 15364 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘𝐹) ∈ ℝ)
10761, 80absmuld 15382 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘(𝐹 · -𝐺)) = ((abs‘𝐹) · (abs‘-𝐺)))
10880abscld 15364 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘-𝐺) ∈ ℝ)
109 1red 11135 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 1 ∈ ℝ)
11061absge0d 15372 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 0 ≤ (abs‘𝐹))
111 recn 11118 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ ℝ → 𝑟 ∈ ℂ)
112111, 66sylan2 593 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → 𝐺 ∈ ℂ)
113112absnegd 15377 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘-𝐺) = (abs‘𝐺))
114 fourierdlem47.absg . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘𝐺) ≤ 1)
115113, 114eqbrtrd 5117 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘-𝐺) ≤ 1)
11662, 63, 64, 115syl21anc 837 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘-𝐺) ≤ 1)
117108, 109, 106, 110, 116lemul2ad 12083 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → ((abs‘𝐹) · (abs‘-𝐺)) ≤ ((abs‘𝐹) · 1))
118106recnd 11162 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘𝐹) ∈ ℂ)
119118mulridd 11151 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → ((abs‘𝐹) · 1) = (abs‘𝐹))
120117, 119breqtrd 5121 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → ((abs‘𝐹) · (abs‘-𝐺)) ≤ (abs‘𝐹))
121107, 120eqbrtrd 5117 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘(𝐹 · -𝐺)) ≤ (abs‘𝐹))
122102, 105, 101, 106, 121itgle 25727 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ∫𝐼(abs‘(𝐹 · -𝐺)) d𝑥 ≤ ∫𝐼(abs‘𝐹) d𝑥)
123122, 11breqtrrdi 5137 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ∫𝐼(abs‘(𝐹 · -𝐺)) d𝑥𝑍)
12483, 103, 94, 104, 123letrd 11291 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) ≤ 𝑍)
12583, 94, 93, 124leadd2dd 11753 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ≤ ((𝑋 + 𝑌) + 𝑍))
12685, 95, 71, 125lediv1dd 13013 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸))
127 flltp1 13722 . . . . . . . . . . 11 ((((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
12896, 127syl 17 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
12996, 45, 46sylancl 586 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
130128, 129breqtrrd 5123 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
13188, 96, 98, 126, 130lelttrd 11292 . . . . . . . 8 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) < (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
13288, 98, 89, 131ltadd1dd 11749 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) < ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1))
133132, 1breqtrrdi 5137 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) < 𝑀)
134100rexrd 11184 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑀 ∈ ℝ*)
135 pnfxr 11188 . . . . . . . 8 +∞ ∈ ℝ*
136135a1i 11 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → +∞ ∈ ℝ*)
137 simpr 484 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑟 ∈ (𝑀(,)+∞))
138 ioogtlb 45480 . . . . . . 7 ((𝑀 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑟 ∈ (𝑀(,)+∞)) → 𝑀 < 𝑟)
139134, 136, 137, 138syl3anc 1373 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑀 < 𝑟)
14090, 100, 72, 133, 139lttrd 11295 . . . . 5 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) < 𝑟)
14190, 72, 140ltled 11282 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) ≤ 𝑟)
14272recnd 11162 . . . . 5 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑟 ∈ ℂ)
143 fourierdlem47.b . . . . 5 ((𝜑𝑟 ∈ ℂ) → 𝐵 ∈ ℂ)
144142, 143syldan 591 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐵 ∈ ℂ)
145 fourierdlem47.absb . . . . 5 ((𝜑𝑟 ∈ ℝ) → (abs‘𝐵) ≤ 1)
14658, 145sylan2 593 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘𝐵) ≤ 1)
147 fourierdlem47.d . . . . 5 ((𝜑𝑟 ∈ ℂ) → 𝐷 ∈ ℂ)
148142, 147syldan 591 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐷 ∈ ℂ)
149 fourierdlem47.absd . . . . 5 ((𝜑𝑟 ∈ ℝ) → (abs‘𝐷) ≤ 1)
15058, 149sylan2 593 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘𝐷) ≤ 1)
15160, 61, 67, 68, 2, 69, 6, 70, 71, 72, 141, 144, 146, 148, 150fourierdlem30 46122 . . 3 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
152151ralrimiva 3121 . 2 (𝜑 → ∀𝑟 ∈ (𝑀(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
153 oveq1 7360 . . . 4 (𝑚 = 𝑀 → (𝑚(,)+∞) = (𝑀(,)+∞))
154153raleqdv 3290 . . 3 (𝑚 = 𝑀 → (∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸 ↔ ∀𝑟 ∈ (𝑀(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸))
155154rspcev 3579 . 2 ((𝑀 ∈ ℕ ∧ ∀𝑟 ∈ (𝑀(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
15657, 152, 155syl2anc 584 1 (𝜑 → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  +∞cpnf 11165  *cxr 11167   < clt 11168  cle 11169  cmin 11365  -cneg 11366   / cdiv 11795  cn 12146  0cn0 12402  cz 12489  +crp 12911  (,)cioo 13266  cfl 13712  abscabs 15159  𝐿1cibl 25534  citg 25535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cn 23130  df-cnp 23131  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-ovol 25381  df-vol 25382  df-mbf 25536  df-itg1 25537  df-itg2 25538  df-ibl 25539  df-itg 25540  df-0p 25587
This theorem is referenced by:  fourierdlem73  46164
  Copyright terms: Public domain W3C validator