Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem47 Structured version   Visualization version   GIF version

Theorem fourierdlem47 46151
Description: For 𝑟 large enough, the final expression is less than the given positive 𝐸. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem47.ibl (𝜑 → (𝑥𝐼𝐹) ∈ 𝐿1)
fourierdlem47.iblmul ((𝜑𝑟 ∈ ℝ) → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
fourierdlem47.f ((𝜑𝑥𝐼) → 𝐹 ∈ ℂ)
fourierdlem47.g (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℂ) → 𝐺 ∈ ℂ)
fourierdlem47.absg (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘𝐺) ≤ 1)
fourierdlem47.a (𝜑𝐴 ∈ ℂ)
fourierdlem47.x 𝑋 = (abs‘𝐴)
fourierdlem47.c (𝜑𝐶 ∈ ℂ)
fourierdlem47.y 𝑌 = (abs‘𝐶)
fourierdlem47.z 𝑍 = ∫𝐼(abs‘𝐹) d𝑥
fourierdlem47.e (𝜑𝐸 ∈ ℝ+)
fourierdlem47.b ((𝜑𝑟 ∈ ℂ) → 𝐵 ∈ ℂ)
fourierdlem47.absb ((𝜑𝑟 ∈ ℝ) → (abs‘𝐵) ≤ 1)
fourierdlem47.d ((𝜑𝑟 ∈ ℂ) → 𝐷 ∈ ℂ)
fourierdlem47.absd ((𝜑𝑟 ∈ ℝ) → (abs‘𝐷) ≤ 1)
fourierdlem47.m 𝑀 = ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1)
Assertion
Ref Expression
fourierdlem47 (𝜑 → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
Distinct variable groups:   𝐴,𝑚   𝐵,𝑚   𝐶,𝑚   𝐷,𝑚   𝑚,𝐸   𝑚,𝐹   𝑚,𝐺   𝑚,𝐼,𝑥   𝑚,𝑀,𝑟,𝑥   𝜑,𝑟,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐴(𝑥,𝑟)   𝐵(𝑥,𝑟)   𝐶(𝑥,𝑟)   𝐷(𝑥,𝑟)   𝐸(𝑥,𝑟)   𝐹(𝑥,𝑟)   𝐺(𝑥,𝑟)   𝐼(𝑟)   𝑋(𝑥,𝑚,𝑟)   𝑌(𝑥,𝑚,𝑟)   𝑍(𝑥,𝑚,𝑟)

Proof of Theorem fourierdlem47
StepHypRef Expression
1 fourierdlem47.m . . 3 𝑀 = ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1)
2 fourierdlem47.x . . . . . . . . . . 11 𝑋 = (abs‘𝐴)
3 fourierdlem47.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
43abscld 15405 . . . . . . . . . . 11 (𝜑 → (abs‘𝐴) ∈ ℝ)
52, 4eqeltrid 2832 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
6 fourierdlem47.y . . . . . . . . . . 11 𝑌 = (abs‘𝐶)
7 fourierdlem47.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
87abscld 15405 . . . . . . . . . . 11 (𝜑 → (abs‘𝐶) ∈ ℝ)
96, 8eqeltrid 2832 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
105, 9readdcld 11203 . . . . . . . . 9 (𝜑 → (𝑋 + 𝑌) ∈ ℝ)
11 fourierdlem47.z . . . . . . . . . 10 𝑍 = ∫𝐼(abs‘𝐹) d𝑥
12 fourierdlem47.f . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → 𝐹 ∈ ℂ)
1312abscld 15405 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (abs‘𝐹) ∈ ℝ)
14 fourierdlem47.ibl . . . . . . . . . . . 12 (𝜑 → (𝑥𝐼𝐹) ∈ 𝐿1)
1512, 14iblabs 25730 . . . . . . . . . . 11 (𝜑 → (𝑥𝐼 ↦ (abs‘𝐹)) ∈ 𝐿1)
1613, 15itgrecl 25699 . . . . . . . . . 10 (𝜑 → ∫𝐼(abs‘𝐹) d𝑥 ∈ ℝ)
1711, 16eqeltrid 2832 . . . . . . . . 9 (𝜑𝑍 ∈ ℝ)
1810, 17readdcld 11203 . . . . . . . 8 (𝜑 → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ)
19 fourierdlem47.e . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
2019rpred 12995 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
2119rpne0d 13000 . . . . . . . 8 (𝜑𝐸 ≠ 0)
2218, 20, 21redivcld 12010 . . . . . . 7 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ)
23 1red 11175 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
2422, 23readdcld 11203 . . . . . 6 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ)
2524flcld 13760 . . . . 5 (𝜑 → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℤ)
26 0red 11177 . . . . . 6 (𝜑 → 0 ∈ ℝ)
27 reflcl 13758 . . . . . . 7 (((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℝ)
2824, 27syl 17 . . . . . 6 (𝜑 → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℝ)
29 0lt1 11700 . . . . . . 7 0 < 1
3029a1i 11 . . . . . 6 (𝜑 → 0 < 1)
313absge0d 15413 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (abs‘𝐴))
3231, 2breqtrrdi 5149 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝑋)
337absge0d 15413 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (abs‘𝐶))
3433, 6breqtrrdi 5149 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝑌)
355, 9, 32, 34addge0d 11754 . . . . . . . . . . 11 (𝜑 → 0 ≤ (𝑋 + 𝑌))
3612absge0d 15413 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → 0 ≤ (abs‘𝐹))
3715, 13, 36itgge0 25712 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ∫𝐼(abs‘𝐹) d𝑥)
3837, 11breqtrrdi 5149 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝑍)
3910, 17, 35, 38addge0d 11754 . . . . . . . . . 10 (𝜑 → 0 ≤ ((𝑋 + 𝑌) + 𝑍))
4018, 19, 39divge0d 13035 . . . . . . . . 9 (𝜑 → 0 ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸))
41 flge0nn0 13782 . . . . . . . . 9 (((((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ ∧ 0 ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸)) → (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) ∈ ℕ0)
4222, 40, 41syl2anc 584 . . . . . . . 8 (𝜑 → (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) ∈ ℕ0)
43 nn0addge1 12488 . . . . . . . 8 ((1 ∈ ℝ ∧ (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) ∈ ℕ0) → 1 ≤ (1 + (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸))))
4423, 42, 43syl2anc 584 . . . . . . 7 (𝜑 → 1 ≤ (1 + (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸))))
45 1z 12563 . . . . . . . . 9 1 ∈ ℤ
46 fladdz 13787 . . . . . . . . 9 (((((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
4722, 45, 46sylancl 586 . . . . . . . 8 (𝜑 → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
4842nn0cnd 12505 . . . . . . . . 9 (𝜑 → (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) ∈ ℂ)
4923recnd 11202 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
5048, 49addcomd 11376 . . . . . . . 8 (𝜑 → ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1) = (1 + (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸))))
5147, 50eqtr2d 2765 . . . . . . 7 (𝜑 → (1 + (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸))) = (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
5244, 51breqtrd 5133 . . . . . 6 (𝜑 → 1 ≤ (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
5326, 23, 28, 30, 52ltletrd 11334 . . . . 5 (𝜑 → 0 < (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
54 elnnz 12539 . . . . 5 ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℕ ↔ ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℤ ∧ 0 < (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))))
5525, 53, 54sylanbrc 583 . . . 4 (𝜑 → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℕ)
5655peano2nnd 12203 . . 3 (𝜑 → ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1) ∈ ℕ)
571, 56eqeltrid 2832 . 2 (𝜑𝑀 ∈ ℕ)
58 elioore 13336 . . . . 5 (𝑟 ∈ (𝑀(,)+∞) → 𝑟 ∈ ℝ)
59 fourierdlem47.iblmul . . . . 5 ((𝜑𝑟 ∈ ℝ) → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
6058, 59sylan2 593 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
6112adantlr 715 . . . 4 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝐹 ∈ ℂ)
62 simpll 766 . . . . 5 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝜑)
63 simpr 484 . . . . 5 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝑥𝐼)
6458ad2antlr 727 . . . . . 6 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝑟 ∈ ℝ)
6564recnd 11202 . . . . 5 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝑟 ∈ ℂ)
66 fourierdlem47.g . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℂ) → 𝐺 ∈ ℂ)
6762, 63, 65, 66syl21anc 837 . . . 4 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝐺 ∈ ℂ)
683adantr 480 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐴 ∈ ℂ)
697adantr 480 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐶 ∈ ℂ)
70 eqid 2729 . . . 4 (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) = (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)
7119adantr 480 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐸 ∈ ℝ+)
7258adantl 481 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑟 ∈ ℝ)
732eqcomi 2738 . . . . . . . . . 10 (abs‘𝐴) = 𝑋
746eqcomi 2738 . . . . . . . . . 10 (abs‘𝐶) = 𝑌
7573, 74oveq12i 7399 . . . . . . . . 9 ((abs‘𝐴) + (abs‘𝐶)) = (𝑋 + 𝑌)
7675oveq1i 7397 . . . . . . . 8 (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) = ((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥))
774adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘𝐴) ∈ ℝ)
788adantr 480 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘𝐶) ∈ ℝ)
7977, 78readdcld 11203 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((abs‘𝐴) + (abs‘𝐶)) ∈ ℝ)
8067negcld 11520 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → -𝐺 ∈ ℂ)
8161, 80mulcld 11194 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (𝐹 · -𝐺) ∈ ℂ)
8281, 60itgcl 25685 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ∫𝐼(𝐹 · -𝐺) d𝑥 ∈ ℂ)
8382abscld 15405 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) ∈ ℝ)
8479, 83readdcld 11203 . . . . . . . 8 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
8576, 84eqeltrrid 2833 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
8620adantr 480 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐸 ∈ ℝ)
8721adantr 480 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐸 ≠ 0)
8885, 86, 87redivcld 12010 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) ∈ ℝ)
89 1red 11175 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 1 ∈ ℝ)
9088, 89readdcld 11203 . . . . 5 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) ∈ ℝ)
912, 77eqeltrid 2832 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑋 ∈ ℝ)
926, 78eqeltrid 2832 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑌 ∈ ℝ)
9391, 92readdcld 11203 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (𝑋 + 𝑌) ∈ ℝ)
9417adantr 480 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑍 ∈ ℝ)
9593, 94readdcld 11203 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ)
9695, 86, 87redivcld 12010 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ)
9796, 89readdcld 11203 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ)
9897, 27syl 17 . . . . . . . 8 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℝ)
9998, 89readdcld 11203 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1) ∈ ℝ)
1001, 99eqeltrid 2832 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑀 ∈ ℝ)
10181abscld 15405 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘(𝐹 · -𝐺)) ∈ ℝ)
10281, 60iblabs 25730 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (𝑥𝐼 ↦ (abs‘(𝐹 · -𝐺))) ∈ 𝐿1)
103101, 102itgrecl 25699 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ∫𝐼(abs‘(𝐹 · -𝐺)) d𝑥 ∈ ℝ)
10481, 60itgabs 25736 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) ≤ ∫𝐼(abs‘(𝐹 · -𝐺)) d𝑥)
10515adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (𝑥𝐼 ↦ (abs‘𝐹)) ∈ 𝐿1)
10661abscld 15405 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘𝐹) ∈ ℝ)
10761, 80absmuld 15423 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘(𝐹 · -𝐺)) = ((abs‘𝐹) · (abs‘-𝐺)))
10880abscld 15405 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘-𝐺) ∈ ℝ)
109 1red 11175 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 1 ∈ ℝ)
11061absge0d 15413 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 0 ≤ (abs‘𝐹))
111 recn 11158 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ ℝ → 𝑟 ∈ ℂ)
112111, 66sylan2 593 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → 𝐺 ∈ ℂ)
113112absnegd 15418 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘-𝐺) = (abs‘𝐺))
114 fourierdlem47.absg . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘𝐺) ≤ 1)
115113, 114eqbrtrd 5129 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘-𝐺) ≤ 1)
11662, 63, 64, 115syl21anc 837 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘-𝐺) ≤ 1)
117108, 109, 106, 110, 116lemul2ad 12123 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → ((abs‘𝐹) · (abs‘-𝐺)) ≤ ((abs‘𝐹) · 1))
118106recnd 11202 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘𝐹) ∈ ℂ)
119118mulridd 11191 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → ((abs‘𝐹) · 1) = (abs‘𝐹))
120117, 119breqtrd 5133 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → ((abs‘𝐹) · (abs‘-𝐺)) ≤ (abs‘𝐹))
121107, 120eqbrtrd 5129 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘(𝐹 · -𝐺)) ≤ (abs‘𝐹))
122102, 105, 101, 106, 121itgle 25711 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ∫𝐼(abs‘(𝐹 · -𝐺)) d𝑥 ≤ ∫𝐼(abs‘𝐹) d𝑥)
123122, 11breqtrrdi 5149 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ∫𝐼(abs‘(𝐹 · -𝐺)) d𝑥𝑍)
12483, 103, 94, 104, 123letrd 11331 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) ≤ 𝑍)
12583, 94, 93, 124leadd2dd 11793 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ≤ ((𝑋 + 𝑌) + 𝑍))
12685, 95, 71, 125lediv1dd 13053 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸))
127 flltp1 13762 . . . . . . . . . . 11 ((((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
12896, 127syl 17 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
12996, 45, 46sylancl 586 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
130128, 129breqtrrd 5135 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
13188, 96, 98, 126, 130lelttrd 11332 . . . . . . . 8 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) < (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
13288, 98, 89, 131ltadd1dd 11789 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) < ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1))
133132, 1breqtrrdi 5149 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) < 𝑀)
134100rexrd 11224 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑀 ∈ ℝ*)
135 pnfxr 11228 . . . . . . . 8 +∞ ∈ ℝ*
136135a1i 11 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → +∞ ∈ ℝ*)
137 simpr 484 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑟 ∈ (𝑀(,)+∞))
138 ioogtlb 45493 . . . . . . 7 ((𝑀 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑟 ∈ (𝑀(,)+∞)) → 𝑀 < 𝑟)
139134, 136, 137, 138syl3anc 1373 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑀 < 𝑟)
14090, 100, 72, 133, 139lttrd 11335 . . . . 5 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) < 𝑟)
14190, 72, 140ltled 11322 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) ≤ 𝑟)
14272recnd 11202 . . . . 5 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑟 ∈ ℂ)
143 fourierdlem47.b . . . . 5 ((𝜑𝑟 ∈ ℂ) → 𝐵 ∈ ℂ)
144142, 143syldan 591 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐵 ∈ ℂ)
145 fourierdlem47.absb . . . . 5 ((𝜑𝑟 ∈ ℝ) → (abs‘𝐵) ≤ 1)
14658, 145sylan2 593 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘𝐵) ≤ 1)
147 fourierdlem47.d . . . . 5 ((𝜑𝑟 ∈ ℂ) → 𝐷 ∈ ℂ)
148142, 147syldan 591 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐷 ∈ ℂ)
149 fourierdlem47.absd . . . . 5 ((𝜑𝑟 ∈ ℝ) → (abs‘𝐷) ≤ 1)
15058, 149sylan2 593 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘𝐷) ≤ 1)
15160, 61, 67, 68, 2, 69, 6, 70, 71, 72, 141, 144, 146, 148, 150fourierdlem30 46135 . . 3 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
152151ralrimiva 3125 . 2 (𝜑 → ∀𝑟 ∈ (𝑀(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
153 oveq1 7394 . . . 4 (𝑚 = 𝑀 → (𝑚(,)+∞) = (𝑀(,)+∞))
154153raleqdv 3299 . . 3 (𝑚 = 𝑀 → (∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸 ↔ ∀𝑟 ∈ (𝑀(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸))
155154rspcev 3588 . 2 ((𝑀 ∈ ℕ ∧ ∀𝑟 ∈ (𝑀(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
15657, 152, 155syl2anc 584 1 (𝜑 → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  cn 12186  0cn0 12442  cz 12529  +crp 12951  (,)cioo 13306  cfl 13752  abscabs 15200  𝐿1cibl 25518  citg 25519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cn 23114  df-cnp 23115  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-ovol 25365  df-vol 25366  df-mbf 25520  df-itg1 25521  df-itg2 25522  df-ibl 25523  df-itg 25524  df-0p 25571
This theorem is referenced by:  fourierdlem73  46177
  Copyright terms: Public domain W3C validator