Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem47 Structured version   Visualization version   GIF version

Theorem fourierdlem47 40887
Description: For 𝑟 large enough, the final expression is less than the given positive 𝐸. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem47.ibl (𝜑 → (𝑥𝐼𝐹) ∈ 𝐿1)
fourierdlem47.iblmul ((𝜑𝑟 ∈ ℝ) → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
fourierdlem47.f ((𝜑𝑥𝐼) → 𝐹 ∈ ℂ)
fourierdlem47.g (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℂ) → 𝐺 ∈ ℂ)
fourierdlem47.absg (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘𝐺) ≤ 1)
fourierdlem47.a (𝜑𝐴 ∈ ℂ)
fourierdlem47.x 𝑋 = (abs‘𝐴)
fourierdlem47.c (𝜑𝐶 ∈ ℂ)
fourierdlem47.y 𝑌 = (abs‘𝐶)
fourierdlem47.z 𝑍 = ∫𝐼(abs‘𝐹) d𝑥
fourierdlem47.e (𝜑𝐸 ∈ ℝ+)
fourierdlem47.b ((𝜑𝑟 ∈ ℂ) → 𝐵 ∈ ℂ)
fourierdlem47.absb ((𝜑𝑟 ∈ ℝ) → (abs‘𝐵) ≤ 1)
fourierdlem47.d ((𝜑𝑟 ∈ ℂ) → 𝐷 ∈ ℂ)
fourierdlem47.absd ((𝜑𝑟 ∈ ℝ) → (abs‘𝐷) ≤ 1)
fourierdlem47.m 𝑀 = ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1)
Assertion
Ref Expression
fourierdlem47 (𝜑 → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
Distinct variable groups:   𝐴,𝑚   𝐵,𝑚   𝐶,𝑚   𝐷,𝑚   𝑚,𝐸   𝑚,𝐹   𝑚,𝐺   𝑚,𝐼,𝑥   𝑚,𝑀,𝑟,𝑥   𝜑,𝑟,𝑥
Allowed substitution hints:   𝜑(𝑚)   𝐴(𝑥,𝑟)   𝐵(𝑥,𝑟)   𝐶(𝑥,𝑟)   𝐷(𝑥,𝑟)   𝐸(𝑥,𝑟)   𝐹(𝑥,𝑟)   𝐺(𝑥,𝑟)   𝐼(𝑟)   𝑋(𝑥,𝑚,𝑟)   𝑌(𝑥,𝑚,𝑟)   𝑍(𝑥,𝑚,𝑟)

Proof of Theorem fourierdlem47
StepHypRef Expression
1 fourierdlem47.m . . 3 𝑀 = ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1)
2 fourierdlem47.x . . . . . . . . . . 11 𝑋 = (abs‘𝐴)
3 fourierdlem47.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℂ)
43abscld 14383 . . . . . . . . . . 11 (𝜑 → (abs‘𝐴) ∈ ℝ)
52, 4syl5eqel 2854 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
6 fourierdlem47.y . . . . . . . . . . 11 𝑌 = (abs‘𝐶)
7 fourierdlem47.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℂ)
87abscld 14383 . . . . . . . . . . 11 (𝜑 → (abs‘𝐶) ∈ ℝ)
96, 8syl5eqel 2854 . . . . . . . . . 10 (𝜑𝑌 ∈ ℝ)
105, 9readdcld 10271 . . . . . . . . 9 (𝜑 → (𝑋 + 𝑌) ∈ ℝ)
11 fourierdlem47.z . . . . . . . . . 10 𝑍 = ∫𝐼(abs‘𝐹) d𝑥
12 fourierdlem47.f . . . . . . . . . . . 12 ((𝜑𝑥𝐼) → 𝐹 ∈ ℂ)
1312abscld 14383 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → (abs‘𝐹) ∈ ℝ)
14 fourierdlem47.ibl . . . . . . . . . . . 12 (𝜑 → (𝑥𝐼𝐹) ∈ 𝐿1)
1512, 14iblabs 23815 . . . . . . . . . . 11 (𝜑 → (𝑥𝐼 ↦ (abs‘𝐹)) ∈ 𝐿1)
1613, 15itgrecl 23784 . . . . . . . . . 10 (𝜑 → ∫𝐼(abs‘𝐹) d𝑥 ∈ ℝ)
1711, 16syl5eqel 2854 . . . . . . . . 9 (𝜑𝑍 ∈ ℝ)
1810, 17readdcld 10271 . . . . . . . 8 (𝜑 → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ)
19 fourierdlem47.e . . . . . . . . 9 (𝜑𝐸 ∈ ℝ+)
2019rpred 12075 . . . . . . . 8 (𝜑𝐸 ∈ ℝ)
2119rpne0d 12080 . . . . . . . 8 (𝜑𝐸 ≠ 0)
2218, 20, 21redivcld 11055 . . . . . . 7 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ)
23 1red 10257 . . . . . . 7 (𝜑 → 1 ∈ ℝ)
2422, 23readdcld 10271 . . . . . 6 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ)
2524flcld 12807 . . . . 5 (𝜑 → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℤ)
26 0red 10243 . . . . . 6 (𝜑 → 0 ∈ ℝ)
27 reflcl 12805 . . . . . . 7 (((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℝ)
2824, 27syl 17 . . . . . 6 (𝜑 → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℝ)
29 0lt1 10752 . . . . . . 7 0 < 1
3029a1i 11 . . . . . 6 (𝜑 → 0 < 1)
313absge0d 14391 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (abs‘𝐴))
3231, 2syl6breqr 4828 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝑋)
337absge0d 14391 . . . . . . . . . . . . 13 (𝜑 → 0 ≤ (abs‘𝐶))
3433, 6syl6breqr 4828 . . . . . . . . . . . 12 (𝜑 → 0 ≤ 𝑌)
355, 9, 32, 34addge0d 10805 . . . . . . . . . . 11 (𝜑 → 0 ≤ (𝑋 + 𝑌))
3612absge0d 14391 . . . . . . . . . . . . 13 ((𝜑𝑥𝐼) → 0 ≤ (abs‘𝐹))
3715, 13, 36itgge0 23797 . . . . . . . . . . . 12 (𝜑 → 0 ≤ ∫𝐼(abs‘𝐹) d𝑥)
3837, 11syl6breqr 4828 . . . . . . . . . . 11 (𝜑 → 0 ≤ 𝑍)
3910, 17, 35, 38addge0d 10805 . . . . . . . . . 10 (𝜑 → 0 ≤ ((𝑋 + 𝑌) + 𝑍))
4018, 19, 39divge0d 12115 . . . . . . . . 9 (𝜑 → 0 ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸))
41 flge0nn0 12829 . . . . . . . . 9 (((((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ ∧ 0 ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸)) → (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) ∈ ℕ0)
4222, 40, 41syl2anc 573 . . . . . . . 8 (𝜑 → (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) ∈ ℕ0)
43 nn0addge1 11541 . . . . . . . 8 ((1 ∈ ℝ ∧ (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) ∈ ℕ0) → 1 ≤ (1 + (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸))))
4423, 42, 43syl2anc 573 . . . . . . 7 (𝜑 → 1 ≤ (1 + (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸))))
45 1z 11609 . . . . . . . . 9 1 ∈ ℤ
46 fladdz 12834 . . . . . . . . 9 (((((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
4722, 45, 46sylancl 574 . . . . . . . 8 (𝜑 → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
4842nn0cnd 11555 . . . . . . . . 9 (𝜑 → (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) ∈ ℂ)
4923recnd 10270 . . . . . . . . 9 (𝜑 → 1 ∈ ℂ)
5048, 49addcomd 10440 . . . . . . . 8 (𝜑 → ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1) = (1 + (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸))))
5147, 50eqtr2d 2806 . . . . . . 7 (𝜑 → (1 + (⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸))) = (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
5244, 51breqtrd 4812 . . . . . 6 (𝜑 → 1 ≤ (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
5326, 23, 28, 30, 52ltletrd 10399 . . . . 5 (𝜑 → 0 < (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
54 elnnz 11589 . . . . 5 ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℕ ↔ ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℤ ∧ 0 < (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))))
5525, 53, 54sylanbrc 572 . . . 4 (𝜑 → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℕ)
5655peano2nnd 11239 . . 3 (𝜑 → ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1) ∈ ℕ)
571, 56syl5eqel 2854 . 2 (𝜑𝑀 ∈ ℕ)
58 elioore 12410 . . . . 5 (𝑟 ∈ (𝑀(,)+∞) → 𝑟 ∈ ℝ)
59 fourierdlem47.iblmul . . . . 5 ((𝜑𝑟 ∈ ℝ) → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
6058, 59sylan2 580 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
6112adantlr 694 . . . 4 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝐹 ∈ ℂ)
62 simpll 750 . . . . 5 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝜑)
63 simpr 471 . . . . 5 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝑥𝐼)
6458ad2antlr 706 . . . . . 6 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝑟 ∈ ℝ)
6564recnd 10270 . . . . 5 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝑟 ∈ ℂ)
66 fourierdlem47.g . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℂ) → 𝐺 ∈ ℂ)
6762, 63, 65, 66syl21anc 1475 . . . 4 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 𝐺 ∈ ℂ)
683adantr 466 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐴 ∈ ℂ)
697adantr 466 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐶 ∈ ℂ)
70 eqid 2771 . . . 4 (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) = (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)
7119adantr 466 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐸 ∈ ℝ+)
7258adantl 467 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑟 ∈ ℝ)
732eqcomi 2780 . . . . . . . . . 10 (abs‘𝐴) = 𝑋
746eqcomi 2780 . . . . . . . . . 10 (abs‘𝐶) = 𝑌
7573, 74oveq12i 6805 . . . . . . . . 9 ((abs‘𝐴) + (abs‘𝐶)) = (𝑋 + 𝑌)
7675oveq1i 6803 . . . . . . . 8 (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) = ((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥))
774adantr 466 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘𝐴) ∈ ℝ)
788adantr 466 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘𝐶) ∈ ℝ)
7977, 78readdcld 10271 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((abs‘𝐴) + (abs‘𝐶)) ∈ ℝ)
8067negcld 10581 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → -𝐺 ∈ ℂ)
8161, 80mulcld 10262 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (𝐹 · -𝐺) ∈ ℂ)
8281, 60itgcl 23770 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ∫𝐼(𝐹 · -𝐺) d𝑥 ∈ ℂ)
8382abscld 14383 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) ∈ ℝ)
8479, 83readdcld 10271 . . . . . . . 8 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
8576, 84syl5eqelr 2855 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
8620adantr 466 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐸 ∈ ℝ)
8721adantr 466 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐸 ≠ 0)
8885, 86, 87redivcld 11055 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) ∈ ℝ)
89 1red 10257 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 1 ∈ ℝ)
9088, 89readdcld 10271 . . . . 5 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) ∈ ℝ)
912, 77syl5eqel 2854 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑋 ∈ ℝ)
926, 78syl5eqel 2854 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑌 ∈ ℝ)
9391, 92readdcld 10271 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (𝑋 + 𝑌) ∈ ℝ)
9417adantr 466 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑍 ∈ ℝ)
9593, 94readdcld 10271 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ)
9695, 86, 87redivcld 11055 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ)
9796, 89readdcld 10271 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ)
9897, 27syl 17 . . . . . . . 8 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℝ)
9998, 89readdcld 10271 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1) ∈ ℝ)
1001, 99syl5eqel 2854 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑀 ∈ ℝ)
10181abscld 14383 . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘(𝐹 · -𝐺)) ∈ ℝ)
10281, 60iblabs 23815 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (𝑥𝐼 ↦ (abs‘(𝐹 · -𝐺))) ∈ 𝐿1)
103101, 102itgrecl 23784 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ∫𝐼(abs‘(𝐹 · -𝐺)) d𝑥 ∈ ℝ)
10481, 60itgabs 23821 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) ≤ ∫𝐼(abs‘(𝐹 · -𝐺)) d𝑥)
10515adantr 466 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (𝑥𝐼 ↦ (abs‘𝐹)) ∈ 𝐿1)
10661abscld 14383 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘𝐹) ∈ ℝ)
10761, 80absmuld 14401 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘(𝐹 · -𝐺)) = ((abs‘𝐹) · (abs‘-𝐺)))
10880abscld 14383 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘-𝐺) ∈ ℝ)
109 1red 10257 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 1 ∈ ℝ)
11061absge0d 14391 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → 0 ≤ (abs‘𝐹))
111 recn 10228 . . . . . . . . . . . . . . . . . . . . 21 (𝑟 ∈ ℝ → 𝑟 ∈ ℂ)
112111, 66sylan2 580 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → 𝐺 ∈ ℂ)
113112absnegd 14396 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘-𝐺) = (abs‘𝐺))
114 fourierdlem47.absg . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘𝐺) ≤ 1)
115113, 114eqbrtrd 4808 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐼) ∧ 𝑟 ∈ ℝ) → (abs‘-𝐺) ≤ 1)
11662, 63, 64, 115syl21anc 1475 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘-𝐺) ≤ 1)
117108, 109, 106, 110, 116lemul2ad 11166 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → ((abs‘𝐹) · (abs‘-𝐺)) ≤ ((abs‘𝐹) · 1))
118106recnd 10270 . . . . . . . . . . . . . . . . 17 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘𝐹) ∈ ℂ)
119118mulid1d 10259 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → ((abs‘𝐹) · 1) = (abs‘𝐹))
120117, 119breqtrd 4812 . . . . . . . . . . . . . . 15 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → ((abs‘𝐹) · (abs‘-𝐺)) ≤ (abs‘𝐹))
121107, 120eqbrtrd 4808 . . . . . . . . . . . . . 14 (((𝜑𝑟 ∈ (𝑀(,)+∞)) ∧ 𝑥𝐼) → (abs‘(𝐹 · -𝐺)) ≤ (abs‘𝐹))
122102, 105, 101, 106, 121itgle 23796 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ∫𝐼(abs‘(𝐹 · -𝐺)) d𝑥 ≤ ∫𝐼(abs‘𝐹) d𝑥)
123122, 11syl6breqr 4828 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ∫𝐼(abs‘(𝐹 · -𝐺)) d𝑥𝑍)
12483, 103, 94, 104, 123letrd 10396 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) ≤ 𝑍)
12583, 94, 93, 124leadd2dd 10844 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ≤ ((𝑋 + 𝑌) + 𝑍))
12685, 95, 71, 125lediv1dd 12133 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸))
127 flltp1 12809 . . . . . . . . . . 11 ((((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
12896, 127syl 17 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
12996, 45, 46sylancl 574 . . . . . . . . . 10 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = ((⌊‘(((𝑋 + 𝑌) + 𝑍) / 𝐸)) + 1))
130128, 129breqtrrd 4814 . . . . . . . . 9 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
13188, 96, 98, 126, 130lelttrd 10397 . . . . . . . 8 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) < (⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
13288, 98, 89, 131ltadd1dd 10840 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) < ((⌊‘((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) + 1))
133132, 1syl6breqr 4828 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) < 𝑀)
134100rexrd 10291 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑀 ∈ ℝ*)
135 pnfxr 10294 . . . . . . . 8 +∞ ∈ ℝ*
136135a1i 11 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → +∞ ∈ ℝ*)
137 simpr 471 . . . . . . 7 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑟 ∈ (𝑀(,)+∞))
138 ioogtlb 40238 . . . . . . 7 ((𝑀 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑟 ∈ (𝑀(,)+∞)) → 𝑀 < 𝑟)
139134, 136, 137, 138syl3anc 1476 . . . . . 6 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑀 < 𝑟)
14090, 100, 72, 133, 139lttrd 10400 . . . . 5 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) < 𝑟)
14190, 72, 140ltled 10387 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → ((((𝑋 + 𝑌) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝐸) + 1) ≤ 𝑟)
14272recnd 10270 . . . . 5 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝑟 ∈ ℂ)
143 fourierdlem47.b . . . . 5 ((𝜑𝑟 ∈ ℂ) → 𝐵 ∈ ℂ)
144142, 143syldan 579 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐵 ∈ ℂ)
145 fourierdlem47.absb . . . . 5 ((𝜑𝑟 ∈ ℝ) → (abs‘𝐵) ≤ 1)
14658, 145sylan2 580 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘𝐵) ≤ 1)
147 fourierdlem47.d . . . . 5 ((𝜑𝑟 ∈ ℂ) → 𝐷 ∈ ℂ)
148142, 147syldan 579 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → 𝐷 ∈ ℂ)
149 fourierdlem47.absd . . . . 5 ((𝜑𝑟 ∈ ℝ) → (abs‘𝐷) ≤ 1)
15058, 149sylan2 580 . . . 4 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘𝐷) ≤ 1)
15160, 61, 67, 68, 2, 69, 6, 70, 71, 72, 141, 144, 146, 148, 150fourierdlem30 40871 . . 3 ((𝜑𝑟 ∈ (𝑀(,)+∞)) → (abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
152151ralrimiva 3115 . 2 (𝜑 → ∀𝑟 ∈ (𝑀(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
153 oveq1 6800 . . . 4 (𝑚 = 𝑀 → (𝑚(,)+∞) = (𝑀(,)+∞))
154153raleqdv 3293 . . 3 (𝑚 = 𝑀 → (∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸 ↔ ∀𝑟 ∈ (𝑀(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸))
155154rspcev 3460 . 2 ((𝑀 ∈ ℕ ∧ ∀𝑟 ∈ (𝑀(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
15657, 152, 155syl2anc 573 1 (𝜑 → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)(abs‘(((𝐴 · -(𝐵 / 𝑟)) − (𝐶 · -(𝐷 / 𝑟))) − ∫𝐼(𝐹 · -(𝐺 / 𝑟)) d𝑥)) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062   class class class wbr 4786  cmpt 4863  cfv 6031  (class class class)co 6793  cc 10136  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143  +∞cpnf 10273  *cxr 10275   < clt 10276  cle 10277  cmin 10468  -cneg 10469   / cdiv 10886  cn 11222  0cn0 11494  cz 11579  +crp 12035  (,)cioo 12380  cfl 12799  abscabs 14182  𝐿1cibl 23605  citg 23606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cc 9459  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-disj 4755  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-ofr 7045  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-omul 7718  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-acn 8968  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-rlim 14428  df-sum 14625  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cn 21252  df-cnp 21253  df-cmp 21411  df-tx 21586  df-hmeo 21779  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-ovol 23452  df-vol 23453  df-mbf 23607  df-itg1 23608  df-itg2 23609  df-ibl 23610  df-itg 23611  df-0p 23657
This theorem is referenced by:  fourierdlem73  40913
  Copyright terms: Public domain W3C validator