![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > modmuladdim | Structured version Visualization version GIF version |
Description: Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.) |
Ref | Expression |
---|---|
modmuladdim | ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 12643 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
2 | modelico 13932 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ (0[,)𝑀)) | |
3 | 1, 2 | sylan 579 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ (0[,)𝑀)) |
4 | 3 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ (0[,)𝑀)) |
5 | eleq1 2832 | . . . . 5 ⊢ ((𝐴 mod 𝑀) = 𝐵 → ((𝐴 mod 𝑀) ∈ (0[,)𝑀) ↔ 𝐵 ∈ (0[,)𝑀))) | |
6 | 5 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴 mod 𝑀) ∈ (0[,)𝑀) ↔ 𝐵 ∈ (0[,)𝑀))) |
7 | 4, 6 | mpbid 232 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐵 ∈ (0[,)𝑀)) |
8 | simpll 766 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ 𝐵 ∈ (0[,)𝑀)) → 𝐴 ∈ ℤ) | |
9 | simpr 484 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ 𝐵 ∈ (0[,)𝑀)) → 𝐵 ∈ (0[,)𝑀)) | |
10 | simpr 484 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ+) | |
11 | 10 | adantr 480 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ 𝐵 ∈ (0[,)𝑀)) → 𝑀 ∈ ℝ+) |
12 | modmuladd 13964 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) | |
13 | 8, 9, 11, 12 | syl3anc 1371 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ 𝐵 ∈ (0[,)𝑀)) → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) |
14 | 13 | biimpd 229 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ 𝐵 ∈ (0[,)𝑀)) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) |
15 | 14 | impancom 451 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐵 ∈ (0[,)𝑀) → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) |
16 | 7, 15 | mpd 15 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) |
17 | 16 | ex 412 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 (class class class)co 7448 ℝcr 11183 0cc0 11184 + caddc 11187 · cmul 11189 ℤcz 12639 ℝ+crp 13057 [,)cico 13409 mod cmo 13920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-ico 13413 df-fl 13843 df-mod 13921 |
This theorem is referenced by: modmuladdnn0 13966 2lgsoddprmlem2 27471 remexz 42061 fppr2odd 47605 |
Copyright terms: Public domain | W3C validator |