MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmuladdim Structured version   Visualization version   GIF version

Theorem modmuladdim 13823
Description: Implication of a decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
modmuladdim ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑀

Proof of Theorem modmuladdim
StepHypRef Expression
1 zre 12479 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2 modelico 13787 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ (0[,)𝑀))
31, 2sylan 580 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ (0[,)𝑀))
43adantr 480 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ (0[,)𝑀))
5 eleq1 2821 . . . . 5 ((𝐴 mod 𝑀) = 𝐵 → ((𝐴 mod 𝑀) ∈ (0[,)𝑀) ↔ 𝐵 ∈ (0[,)𝑀)))
65adantl 481 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴 mod 𝑀) ∈ (0[,)𝑀) ↔ 𝐵 ∈ (0[,)𝑀)))
74, 6mpbid 232 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐵 ∈ (0[,)𝑀))
8 simpll 766 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ 𝐵 ∈ (0[,)𝑀)) → 𝐴 ∈ ℤ)
9 simpr 484 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ 𝐵 ∈ (0[,)𝑀)) → 𝐵 ∈ (0[,)𝑀))
10 simpr 484 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ+)
1110adantr 480 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ 𝐵 ∈ (0[,)𝑀)) → 𝑀 ∈ ℝ+)
12 modmuladd 13822 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
138, 9, 11, 12syl3anc 1373 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ 𝐵 ∈ (0[,)𝑀)) → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
1413biimpd 229 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ 𝐵 ∈ (0[,)𝑀)) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
1514impancom 451 . . 3 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐵 ∈ (0[,)𝑀) → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
167, 15mpd 15 . 2 (((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))
1716ex 412 1 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057  (class class class)co 7352  cr 11012  0cc0 11013   + caddc 11016   · cmul 11018  cz 12475  +crp 12892  [,)cico 13249   mod cmo 13775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-ico 13253  df-fl 13698  df-mod 13776
This theorem is referenced by:  modmuladdnn0  13824  2lgsoddprmlem2  27348  remexz  42217  fppr2odd  47855
  Copyright terms: Public domain W3C validator