| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > modmuladd | Structured version Visualization version GIF version | ||
| Description: Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.) |
| Ref | Expression |
|---|---|
| modmuladd | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7394 | . . . . . 6 ⊢ (𝑘 = (⌊‘(𝐴 / 𝑀)) → (𝑘 · 𝑀) = ((⌊‘(𝐴 / 𝑀)) · 𝑀)) | |
| 2 | 1 | oveq1d 7402 | . . . . 5 ⊢ (𝑘 = (⌊‘(𝐴 / 𝑀)) → ((𝑘 · 𝑀) + (𝐴 mod 𝑀)) = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀))) |
| 3 | 2 | eqeq2d 2740 | . . . 4 ⊢ (𝑘 = (⌊‘(𝐴 / 𝑀)) → (𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)) ↔ 𝐴 = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)))) |
| 4 | zre 12533 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 5 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → 𝐴 ∈ ℝ) |
| 6 | rpre 12960 | . . . . . . . 8 ⊢ (𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ) | |
| 7 | 6 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ) |
| 8 | rpne0 12968 | . . . . . . . 8 ⊢ (𝑀 ∈ ℝ+ → 𝑀 ≠ 0) | |
| 9 | 8 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → 𝑀 ≠ 0) |
| 10 | 5, 7, 9 | redivcld 12010 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝐴 / 𝑀) ∈ ℝ) |
| 11 | 10 | flcld 13760 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (⌊‘(𝐴 / 𝑀)) ∈ ℤ) |
| 12 | 11 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) → (⌊‘(𝐴 / 𝑀)) ∈ ℤ) |
| 13 | flpmodeq 13836 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)) = 𝐴) | |
| 14 | 4, 13 | sylan 580 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)) = 𝐴) |
| 15 | 14 | eqcomd 2735 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → 𝐴 = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀))) |
| 16 | 15 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) → 𝐴 = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀))) |
| 17 | 3, 12, 16 | rspcedvdw 3591 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀))) |
| 18 | oveq2 7395 | . . . . . 6 ⊢ (𝐵 = (𝐴 mod 𝑀) → ((𝑘 · 𝑀) + 𝐵) = ((𝑘 · 𝑀) + (𝐴 mod 𝑀))) | |
| 19 | 18 | eqeq2d 2740 | . . . . 5 ⊢ (𝐵 = (𝐴 mod 𝑀) → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)))) |
| 20 | 19 | eqcoms 2737 | . . . 4 ⊢ ((𝐴 mod 𝑀) = 𝐵 → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)))) |
| 21 | 20 | rexbidv 3157 | . . 3 ⊢ ((𝐴 mod 𝑀) = 𝐵 → (∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)))) |
| 22 | 17, 21 | syl5ibrcom 247 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) |
| 23 | oveq1 7394 | . . . 4 ⊢ (𝐴 = ((𝑘 · 𝑀) + 𝐵) → (𝐴 mod 𝑀) = (((𝑘 · 𝑀) + 𝐵) mod 𝑀)) | |
| 24 | simpr 484 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ) | |
| 25 | simpl3 1194 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℝ+) | |
| 26 | simpl2 1193 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) ∧ 𝑘 ∈ ℤ) → 𝐵 ∈ (0[,)𝑀)) | |
| 27 | muladdmodid 13875 | . . . . 5 ⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ∧ 𝐵 ∈ (0[,)𝑀)) → (((𝑘 · 𝑀) + 𝐵) mod 𝑀) = 𝐵) | |
| 28 | 24, 25, 26, 27 | syl3anc 1373 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) ∧ 𝑘 ∈ ℤ) → (((𝑘 · 𝑀) + 𝐵) mod 𝑀) = 𝐵) |
| 29 | 23, 28 | sylan9eqr 2786 | . . 3 ⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) ∧ 𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → (𝐴 mod 𝑀) = 𝐵) |
| 30 | 29 | rexlimdva2 3136 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) → (∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵) → (𝐴 mod 𝑀) = 𝐵)) |
| 31 | 22, 30 | impbid 212 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 + caddc 11071 · cmul 11073 / cdiv 11835 ℤcz 12529 ℝ+crp 12951 [,)cico 13308 ⌊cfl 13752 mod cmo 13831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-ico 13312 df-fl 13754 df-mod 13832 |
| This theorem is referenced by: modmuladdim 13879 |
| Copyright terms: Public domain | W3C validator |