| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > modmuladd | Structured version Visualization version GIF version | ||
| Description: Decomposition of an integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.) |
| Ref | Expression |
|---|---|
| modmuladd | ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7359 | . . . . . 6 ⊢ (𝑘 = (⌊‘(𝐴 / 𝑀)) → (𝑘 · 𝑀) = ((⌊‘(𝐴 / 𝑀)) · 𝑀)) | |
| 2 | 1 | oveq1d 7367 | . . . . 5 ⊢ (𝑘 = (⌊‘(𝐴 / 𝑀)) → ((𝑘 · 𝑀) + (𝐴 mod 𝑀)) = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀))) |
| 3 | 2 | eqeq2d 2744 | . . . 4 ⊢ (𝑘 = (⌊‘(𝐴 / 𝑀)) → (𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)) ↔ 𝐴 = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)))) |
| 4 | zre 12479 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 5 | 4 | adantr 480 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → 𝐴 ∈ ℝ) |
| 6 | rpre 12901 | . . . . . . . 8 ⊢ (𝑀 ∈ ℝ+ → 𝑀 ∈ ℝ) | |
| 7 | 6 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ) |
| 8 | rpne0 12909 | . . . . . . . 8 ⊢ (𝑀 ∈ ℝ+ → 𝑀 ≠ 0) | |
| 9 | 8 | adantl 481 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → 𝑀 ≠ 0) |
| 10 | 5, 7, 9 | redivcld 11956 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (𝐴 / 𝑀) ∈ ℝ) |
| 11 | 10 | flcld 13704 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (⌊‘(𝐴 / 𝑀)) ∈ ℤ) |
| 12 | 11 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) → (⌊‘(𝐴 / 𝑀)) ∈ ℤ) |
| 13 | flpmodeq 13780 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)) = 𝐴) | |
| 14 | 4, 13 | sylan 580 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀)) = 𝐴) |
| 15 | 14 | eqcomd 2739 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → 𝐴 = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀))) |
| 16 | 15 | 3adant2 1131 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) → 𝐴 = (((⌊‘(𝐴 / 𝑀)) · 𝑀) + (𝐴 mod 𝑀))) |
| 17 | 3, 12, 16 | rspcedvdw 3576 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀))) |
| 18 | oveq2 7360 | . . . . . 6 ⊢ (𝐵 = (𝐴 mod 𝑀) → ((𝑘 · 𝑀) + 𝐵) = ((𝑘 · 𝑀) + (𝐴 mod 𝑀))) | |
| 19 | 18 | eqeq2d 2744 | . . . . 5 ⊢ (𝐵 = (𝐴 mod 𝑀) → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)))) |
| 20 | 19 | eqcoms 2741 | . . . 4 ⊢ ((𝐴 mod 𝑀) = 𝐵 → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)))) |
| 21 | 20 | rexbidv 3157 | . . 3 ⊢ ((𝐴 mod 𝑀) = 𝐵 → (∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + (𝐴 mod 𝑀)))) |
| 22 | 17, 21 | syl5ibrcom 247 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) |
| 23 | oveq1 7359 | . . . 4 ⊢ (𝐴 = ((𝑘 · 𝑀) + 𝐵) → (𝐴 mod 𝑀) = (((𝑘 · 𝑀) + 𝐵) mod 𝑀)) | |
| 24 | simpr 484 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ) | |
| 25 | simpl3 1194 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℝ+) | |
| 26 | simpl2 1193 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) ∧ 𝑘 ∈ ℤ) → 𝐵 ∈ (0[,)𝑀)) | |
| 27 | muladdmodid 13819 | . . . . 5 ⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ∈ ℝ+ ∧ 𝐵 ∈ (0[,)𝑀)) → (((𝑘 · 𝑀) + 𝐵) mod 𝑀) = 𝐵) | |
| 28 | 24, 25, 26, 27 | syl3anc 1373 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) ∧ 𝑘 ∈ ℤ) → (((𝑘 · 𝑀) + 𝐵) mod 𝑀) = 𝐵) |
| 29 | 23, 28 | sylan9eqr 2790 | . . 3 ⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) ∧ 𝑘 ∈ ℤ) ∧ 𝐴 = ((𝑘 · 𝑀) + 𝐵)) → (𝐴 mod 𝑀) = 𝐵) |
| 30 | 29 | rexlimdva2 3136 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) → (∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵) → (𝐴 mod 𝑀) = 𝐵)) |
| 31 | 22, 30 | impbid 212 | 1 ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ (0[,)𝑀) ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 ↔ ∃𝑘 ∈ ℤ 𝐴 = ((𝑘 · 𝑀) + 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 0cc0 11013 + caddc 11016 · cmul 11018 / cdiv 11781 ℤcz 12475 ℝ+crp 12892 [,)cico 13249 ⌊cfl 13696 mod cmo 13775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-ico 13253 df-fl 13698 df-mod 13776 |
| This theorem is referenced by: modmuladdim 13823 |
| Copyright terms: Public domain | W3C validator |