MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulg1 Structured version   Visualization version   GIF version

Theorem mulg1 19075
Description: Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg1.b 𝐵 = (Base‘𝐺)
mulg1.m · = (.g𝐺)
Assertion
Ref Expression
mulg1 (𝑋𝐵 → (1 · 𝑋) = 𝑋)

Proof of Theorem mulg1
StepHypRef Expression
1 1nn 12275 . . 3 1 ∈ ℕ
2 mulg1.b . . . 4 𝐵 = (Base‘𝐺)
3 eqid 2726 . . . 4 (+g𝐺) = (+g𝐺)
4 mulg1.m . . . 4 · = (.g𝐺)
5 eqid 2726 . . . 4 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
62, 3, 4, 5mulgnn 19069 . . 3 ((1 ∈ ℕ ∧ 𝑋𝐵) → (1 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘1))
71, 6mpan 688 . 2 (𝑋𝐵 → (1 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘1))
8 1z 12644 . . 3 1 ∈ ℤ
9 fvconst2g 7219 . . . 4 ((𝑋𝐵 ∧ 1 ∈ ℕ) → ((ℕ × {𝑋})‘1) = 𝑋)
101, 9mpan2 689 . . 3 (𝑋𝐵 → ((ℕ × {𝑋})‘1) = 𝑋)
118, 10seq1i 14035 . 2 (𝑋𝐵 → (seq1((+g𝐺), (ℕ × {𝑋}))‘1) = 𝑋)
127, 11eqtrd 2766 1 (𝑋𝐵 → (1 · 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  {csn 4633   × cxp 5680  cfv 6554  (class class class)co 7424  1c1 11159  cn 12264  seqcseq 14021  Basecbs 17213  +gcplusg 17266  .gcmg 19061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-n0 12525  df-z 12611  df-uz 12875  df-seq 14022  df-mulg 19062
This theorem is referenced by:  mulg2  19077  mulgnn0p1  19079  mulgm1  19088  mulgp1  19101  mulgnnass  19103  cycsubmcl  19195  cycsubggend  19199  cycsubgcl  19200  odm1inv  19551  odbezout  19556  od1  19557  odeq1  19558  gex1  19589  gsumsnfd  19949  ablfacrp  20066  pgpfac1lem2  20075  pgpfac1lem3  20077  ablsimpgfindlem1  20107  srgbinom  20214  mulgrhm  21467  zlmlmod  21516  frgpcyg  21571  freshmansdream  21572  evlslem1  22097  m2detleiblem5  22618  cayhamlem1  22859  cpmadugsumlemB  22867  ply1remlem  26192  fta1blem  26198  xrsmulgzz  32889  omndmul2  32947  isarchi3  33052  archirngz  33054  archiabllem1a  33056  ofldchr  33192  evl1deg1  33448  evl1deg2  33449  evl1deg3  33450  coe1vr1  33460  deg1vr  33461  primrootscoprbij  41800  aks6d1c1p8  41813  ringexp0nn  41832  aks6d1c5lem3  41835  aks6d1c6lem1  41868  ply1vr1smo  47765
  Copyright terms: Public domain W3C validator