| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulg1 | Structured version Visualization version GIF version | ||
| Description: Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulg1.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulg1.m | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| mulg1 | ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 12139 | . . 3 ⊢ 1 ∈ ℕ | |
| 2 | mulg1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2729 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | mulg1.m | . . . 4 ⊢ · = (.g‘𝐺) | |
| 5 | eqid 2729 | . . . 4 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
| 6 | 2, 3, 4, 5 | mulgnn 18954 | . . 3 ⊢ ((1 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (1 · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘1)) |
| 7 | 1, 6 | mpan 690 | . 2 ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘1)) |
| 8 | 1z 12505 | . . 3 ⊢ 1 ∈ ℤ | |
| 9 | fvconst2g 7138 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 1 ∈ ℕ) → ((ℕ × {𝑋})‘1) = 𝑋) | |
| 10 | 1, 9 | mpan2 691 | . . 3 ⊢ (𝑋 ∈ 𝐵 → ((ℕ × {𝑋})‘1) = 𝑋) |
| 11 | 8, 10 | seq1i 13922 | . 2 ⊢ (𝑋 ∈ 𝐵 → (seq1((+g‘𝐺), (ℕ × {𝑋}))‘1) = 𝑋) |
| 12 | 7, 11 | eqtrd 2764 | 1 ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4577 × cxp 5617 ‘cfv 6482 (class class class)co 7349 1c1 11010 ℕcn 12128 seqcseq 13908 Basecbs 17120 +gcplusg 17161 .gcmg 18946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-seq 13909 df-mulg 18947 |
| This theorem is referenced by: mulg2 18962 mulgnn0p1 18964 mulgm1 18973 mulgp1 18986 mulgnnass 18988 cycsubmcl 19080 cycsubggend 19084 cycsubgcl 19085 odm1inv 19432 odbezout 19437 od1 19438 odeq1 19439 gex1 19470 gsumsnfd 19830 ablfacrp 19947 pgpfac1lem2 19956 pgpfac1lem3 19958 ablsimpgfindlem1 19988 omndmul2 20012 srgbinom 20116 mulgrhm 21384 zlmlmod 21429 frgpcyg 21480 freshmansdream 21481 ofldchr 21483 evlslem1 21987 psdmvr 22054 psdpw 22055 m2detleiblem5 22510 cayhamlem1 22751 cpmadugsumlemB 22759 ply1remlem 26068 fta1blem 26074 xrsmulgzz 32963 isarchi3 33129 archirngz 33131 archiabllem1a 33133 elrgspnlem2 33183 elrgspnlem3 33184 elrgspnsubrunlem1 33187 evl1deg1 33511 evl1deg2 33512 evl1deg3 33513 coe1vr1 33524 deg1vr 33525 cos9thpiminply 33755 primrootscoprbij 42079 aks6d1c1p8 42092 ringexp0nn 42111 aks6d1c5lem3 42114 aks6d1c6lem1 42147 ply1vr1smo 48371 |
| Copyright terms: Public domain | W3C validator |