![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulg1 | Structured version Visualization version GIF version |
Description: Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulg1.b | โข ๐ต = (Baseโ๐บ) |
mulg1.m | โข ยท = (.gโ๐บ) |
Ref | Expression |
---|---|
mulg1 | โข (๐ โ ๐ต โ (1 ยท ๐) = ๐) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 12229 | . . 3 โข 1 โ โ | |
2 | mulg1.b | . . . 4 โข ๐ต = (Baseโ๐บ) | |
3 | eqid 2730 | . . . 4 โข (+gโ๐บ) = (+gโ๐บ) | |
4 | mulg1.m | . . . 4 โข ยท = (.gโ๐บ) | |
5 | eqid 2730 | . . . 4 โข seq1((+gโ๐บ), (โ ร {๐})) = seq1((+gโ๐บ), (โ ร {๐})) | |
6 | 2, 3, 4, 5 | mulgnn 18996 | . . 3 โข ((1 โ โ โง ๐ โ ๐ต) โ (1 ยท ๐) = (seq1((+gโ๐บ), (โ ร {๐}))โ1)) |
7 | 1, 6 | mpan 686 | . 2 โข (๐ โ ๐ต โ (1 ยท ๐) = (seq1((+gโ๐บ), (โ ร {๐}))โ1)) |
8 | 1z 12598 | . . 3 โข 1 โ โค | |
9 | fvconst2g 7206 | . . . 4 โข ((๐ โ ๐ต โง 1 โ โ) โ ((โ ร {๐})โ1) = ๐) | |
10 | 1, 9 | mpan2 687 | . . 3 โข (๐ โ ๐ต โ ((โ ร {๐})โ1) = ๐) |
11 | 8, 10 | seq1i 13986 | . 2 โข (๐ โ ๐ต โ (seq1((+gโ๐บ), (โ ร {๐}))โ1) = ๐) |
12 | 7, 11 | eqtrd 2770 | 1 โข (๐ โ ๐ต โ (1 ยท ๐) = ๐) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1539 โ wcel 2104 {csn 4629 ร cxp 5675 โcfv 6544 (class class class)co 7413 1c1 11115 โcn 12218 seqcseq 13972 Basecbs 17150 +gcplusg 17203 .gcmg 18988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-n0 12479 df-z 12565 df-uz 12829 df-seq 13973 df-mulg 18989 |
This theorem is referenced by: mulg2 19001 mulgnn0p1 19003 mulgm1 19012 mulgp1 19025 mulgnnass 19027 cycsubmcl 19118 cycsubggend 19122 cycsubgcl 19123 odm1inv 19464 odbezout 19469 od1 19470 odeq1 19471 gex1 19502 gsumsnfd 19862 ablfacrp 19979 pgpfac1lem2 19988 pgpfac1lem3 19990 ablsimpgfindlem1 20020 srgbinom 20127 mulgrhm 21250 zlmlmod 21297 frgpcyg 21350 evlslem1 21866 m2detleiblem5 22349 cayhamlem1 22590 cpmadugsumlemB 22598 ply1remlem 25914 fta1blem 25920 xrsmulgzz 32444 omndmul2 32498 isarchi3 32601 archirngz 32603 archiabllem1a 32605 freshmansdream 32649 ofldchr 32700 ply1vr1smo 47152 |
Copyright terms: Public domain | W3C validator |