Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulg1 | Structured version Visualization version GIF version |
Description: Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulg1.b | ⊢ 𝐵 = (Base‘𝐺) |
mulg1.m | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
mulg1 | ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn 12054 | . . 3 ⊢ 1 ∈ ℕ | |
2 | mulg1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2737 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | mulg1.m | . . . 4 ⊢ · = (.g‘𝐺) | |
5 | eqid 2737 | . . . 4 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
6 | 2, 3, 4, 5 | mulgnn 18775 | . . 3 ⊢ ((1 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (1 · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘1)) |
7 | 1, 6 | mpan 687 | . 2 ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = (seq1((+g‘𝐺), (ℕ × {𝑋}))‘1)) |
8 | 1z 12420 | . . 3 ⊢ 1 ∈ ℤ | |
9 | fvconst2g 7114 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 1 ∈ ℕ) → ((ℕ × {𝑋})‘1) = 𝑋) | |
10 | 1, 9 | mpan2 688 | . . 3 ⊢ (𝑋 ∈ 𝐵 → ((ℕ × {𝑋})‘1) = 𝑋) |
11 | 8, 10 | seq1i 13805 | . 2 ⊢ (𝑋 ∈ 𝐵 → (seq1((+g‘𝐺), (ℕ × {𝑋}))‘1) = 𝑋) |
12 | 7, 11 | eqtrd 2777 | 1 ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {csn 4569 × cxp 5603 ‘cfv 6463 (class class class)co 7313 1c1 10942 ℕcn 12043 seqcseq 13791 Basecbs 16979 +gcplusg 17029 .gcmg 18767 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-pre-mulgt0 11018 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-om 7756 df-1st 7874 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-xr 11083 df-ltxr 11084 df-le 11085 df-sub 11277 df-neg 11278 df-nn 12044 df-n0 12304 df-z 12390 df-uz 12653 df-seq 13792 df-mulg 18768 |
This theorem is referenced by: mulg2 18780 mulgnn0p1 18782 mulgm1 18791 mulgp1 18803 mulgnnass 18805 cycsubmcl 18887 cycsubggend 18891 cycsubgcl 18892 odbezout 19232 od1 19233 odeq1 19234 gex1 19263 gsumsnfd 19619 ablfacrp 19736 pgpfac1lem2 19745 pgpfac1lem3 19747 ablsimpgfindlem1 19777 srgbinom 19848 mulgrhm 20770 zlmlmod 20799 frgpcyg 20852 evlslem1 21363 m2detleiblem5 21845 cayhamlem1 22086 cpmadugsumlemB 22094 ply1remlem 25398 fta1blem 25404 xrsmulgzz 31395 omndmul2 31446 isarchi3 31549 archirngz 31551 archiabllem1a 31553 freshmansdream 31592 ofldchr 31621 ply1vr1smo 45981 |
Copyright terms: Public domain | W3C validator |