MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulg1 Structured version   Visualization version   GIF version

Theorem mulg1 19020
Description: Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg1.b 𝐵 = (Base‘𝐺)
mulg1.m · = (.g𝐺)
Assertion
Ref Expression
mulg1 (𝑋𝐵 → (1 · 𝑋) = 𝑋)

Proof of Theorem mulg1
StepHypRef Expression
1 1nn 12204 . . 3 1 ∈ ℕ
2 mulg1.b . . . 4 𝐵 = (Base‘𝐺)
3 eqid 2730 . . . 4 (+g𝐺) = (+g𝐺)
4 mulg1.m . . . 4 · = (.g𝐺)
5 eqid 2730 . . . 4 seq1((+g𝐺), (ℕ × {𝑋})) = seq1((+g𝐺), (ℕ × {𝑋}))
62, 3, 4, 5mulgnn 19014 . . 3 ((1 ∈ ℕ ∧ 𝑋𝐵) → (1 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘1))
71, 6mpan 690 . 2 (𝑋𝐵 → (1 · 𝑋) = (seq1((+g𝐺), (ℕ × {𝑋}))‘1))
8 1z 12570 . . 3 1 ∈ ℤ
9 fvconst2g 7179 . . . 4 ((𝑋𝐵 ∧ 1 ∈ ℕ) → ((ℕ × {𝑋})‘1) = 𝑋)
101, 9mpan2 691 . . 3 (𝑋𝐵 → ((ℕ × {𝑋})‘1) = 𝑋)
118, 10seq1i 13987 . 2 (𝑋𝐵 → (seq1((+g𝐺), (ℕ × {𝑋}))‘1) = 𝑋)
127, 11eqtrd 2765 1 (𝑋𝐵 → (1 · 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {csn 4592   × cxp 5639  cfv 6514  (class class class)co 7390  1c1 11076  cn 12193  seqcseq 13973  Basecbs 17186  +gcplusg 17227  .gcmg 19006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974  df-mulg 19007
This theorem is referenced by:  mulg2  19022  mulgnn0p1  19024  mulgm1  19033  mulgp1  19046  mulgnnass  19048  cycsubmcl  19140  cycsubggend  19144  cycsubgcl  19145  odm1inv  19490  odbezout  19495  od1  19496  odeq1  19497  gex1  19528  gsumsnfd  19888  ablfacrp  20005  pgpfac1lem2  20014  pgpfac1lem3  20016  ablsimpgfindlem1  20046  srgbinom  20147  mulgrhm  21394  zlmlmod  21439  frgpcyg  21490  freshmansdream  21491  evlslem1  21996  psdmvr  22063  psdpw  22064  m2detleiblem5  22519  cayhamlem1  22760  cpmadugsumlemB  22768  ply1remlem  26077  fta1blem  26083  xrsmulgzz  32954  omndmul2  33033  isarchi3  33148  archirngz  33150  archiabllem1a  33152  elrgspnlem2  33201  elrgspnlem3  33202  elrgspnsubrunlem1  33205  ofldchr  33299  evl1deg1  33552  evl1deg2  33553  evl1deg3  33554  coe1vr1  33564  deg1vr  33565  cos9thpiminply  33785  primrootscoprbij  42097  aks6d1c1p8  42110  ringexp0nn  42129  aks6d1c5lem3  42132  aks6d1c6lem1  42165  ply1vr1smo  48375
  Copyright terms: Public domain W3C validator