![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulgnnp1 | Structured version Visualization version GIF version |
Description: Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulg1.b | ⊢ 𝐵 = (Base‘𝐺) |
mulg1.m | ⊢ · = (.g‘𝐺) |
mulgnnp1.p | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
mulgnnp1 | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝑁 ∈ ℕ) | |
2 | nnuz 12119 | . . . . 5 ⊢ ℕ = (ℤ≥‘1) | |
3 | 1, 2 | syl6eleq 2891 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → 𝑁 ∈ (ℤ≥‘1)) |
4 | seqp1 13222 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘1) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1)))) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1)))) |
6 | id 22 | . . . . 5 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ 𝐵) | |
7 | peano2nn 11487 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
8 | fvconst2g 6822 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {𝑋})‘(𝑁 + 1)) = 𝑋) | |
9 | 6, 7, 8 | syl2anr 596 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((ℕ × {𝑋})‘(𝑁 + 1)) = 𝑋) |
10 | 9 | oveq2d 7023 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1))) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋)) |
11 | 5, 10 | eqtrd 2829 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋)) |
12 | mulg1.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
13 | mulgnnp1.p | . . . 4 ⊢ + = (+g‘𝐺) | |
14 | mulg1.m | . . . 4 ⊢ · = (.g‘𝐺) | |
15 | eqid 2793 | . . . 4 ⊢ seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋})) | |
16 | 12, 13, 14, 15 | mulgnn 17977 | . . 3 ⊢ (((𝑁 + 1) ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1))) |
17 | 7, 16 | sylan 580 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1))) |
18 | 12, 13, 14, 15 | mulgnn 17977 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁)) |
19 | 18 | oveq1d 7022 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 · 𝑋) + 𝑋) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋)) |
20 | 11, 17, 19 | 3eqtr4d 2839 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1520 ∈ wcel 2079 {csn 4466 × cxp 5433 ‘cfv 6217 (class class class)co 7007 1c1 10373 + caddc 10375 ℕcn 11475 ℤ≥cuz 12082 seqcseq 13207 Basecbs 16300 +gcplusg 16382 .gcmg 17969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-om 7428 df-1st 7536 df-2nd 7537 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-nn 11476 df-n0 11735 df-z 11819 df-uz 12083 df-seq 13208 df-mulg 17970 |
This theorem is referenced by: mulg2 17980 mulgnn0p1 17982 mulgnnass 18004 chfacfpmmulgsum2 21145 xrsmulgzz 30309 ofldchr 30496 |
Copyright terms: Public domain | W3C validator |