MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnnp1 Structured version   Visualization version   GIF version

Theorem mulgnnp1 18722
Description: Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg1.b 𝐵 = (Base‘𝐺)
mulg1.m · = (.g𝐺)
mulgnnp1.p + = (+g𝐺)
Assertion
Ref Expression
mulgnnp1 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))

Proof of Theorem mulgnnp1
StepHypRef Expression
1 simpl 483 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑁 ∈ ℕ)
2 nnuz 12631 . . . . 5 ℕ = (ℤ‘1)
31, 2eleqtrdi 2849 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑁 ∈ (ℤ‘1))
4 seqp1 13746 . . . 4 (𝑁 ∈ (ℤ‘1) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1))))
53, 4syl 17 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1))))
6 id 22 . . . . 5 (𝑋𝐵𝑋𝐵)
7 peano2nn 11995 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
8 fvconst2g 7069 . . . . 5 ((𝑋𝐵 ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {𝑋})‘(𝑁 + 1)) = 𝑋)
96, 7, 8syl2anr 597 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((ℕ × {𝑋})‘(𝑁 + 1)) = 𝑋)
109oveq2d 7283 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1))) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋))
115, 10eqtrd 2778 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋))
12 mulg1.b . . . 4 𝐵 = (Base‘𝐺)
13 mulgnnp1.p . . . 4 + = (+g𝐺)
14 mulg1.m . . . 4 · = (.g𝐺)
15 eqid 2738 . . . 4 seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋}))
1612, 13, 14, 15mulgnn 18718 . . 3 (((𝑁 + 1) ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)))
177, 16sylan 580 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)))
1812, 13, 14, 15mulgnn 18718 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁))
1918oveq1d 7282 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 · 𝑋) + 𝑋) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋))
2011, 17, 193eqtr4d 2788 1 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {csn 4561   × cxp 5582  cfv 6426  (class class class)co 7267  1c1 10882   + caddc 10884  cn 11983  cuz 12592  seqcseq 13731  Basecbs 16922  +gcplusg 16972  .gcmg 18710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-1st 7820  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-nn 11984  df-n0 12244  df-z 12330  df-uz 12593  df-seq 13732  df-mulg 18711
This theorem is referenced by:  mulg2  18723  mulgnn0p1  18725  mulgnnass  18748  chfacfpmmulgsum2  22024  xrsmulgzz  31295  ofldchr  31521
  Copyright terms: Public domain W3C validator