MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgnnp1 Structured version   Visualization version   GIF version

Theorem mulgnnp1 18979
Description: Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014.)
Hypotheses
Ref Expression
mulg1.b 𝐵 = (Base‘𝐺)
mulg1.m · = (.g𝐺)
mulgnnp1.p + = (+g𝐺)
Assertion
Ref Expression
mulgnnp1 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))

Proof of Theorem mulgnnp1
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑁 ∈ ℕ)
2 nnuz 12796 . . . . 5 ℕ = (ℤ‘1)
31, 2eleqtrdi 2838 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → 𝑁 ∈ (ℤ‘1))
4 seqp1 13941 . . . 4 (𝑁 ∈ (ℤ‘1) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1))))
53, 4syl 17 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1))))
6 id 22 . . . . 5 (𝑋𝐵𝑋𝐵)
7 peano2nn 12158 . . . . 5 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
8 fvconst2g 7142 . . . . 5 ((𝑋𝐵 ∧ (𝑁 + 1) ∈ ℕ) → ((ℕ × {𝑋})‘(𝑁 + 1)) = 𝑋)
96, 7, 8syl2anr 597 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((ℕ × {𝑋})‘(𝑁 + 1)) = 𝑋)
109oveq2d 7369 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((seq1( + , (ℕ × {𝑋}))‘𝑁) + ((ℕ × {𝑋})‘(𝑁 + 1))) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋))
115, 10eqtrd 2764 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋))
12 mulg1.b . . . 4 𝐵 = (Base‘𝐺)
13 mulgnnp1.p . . . 4 + = (+g𝐺)
14 mulg1.m . . . 4 · = (.g𝐺)
15 eqid 2729 . . . 4 seq1( + , (ℕ × {𝑋})) = seq1( + , (ℕ × {𝑋}))
1612, 13, 14, 15mulgnn 18972 . . 3 (((𝑁 + 1) ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)))
177, 16sylan 580 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘(𝑁 + 1)))
1812, 13, 14, 15mulgnn 18972 . . 3 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → (𝑁 · 𝑋) = (seq1( + , (ℕ × {𝑋}))‘𝑁))
1918oveq1d 7368 . 2 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 · 𝑋) + 𝑋) = ((seq1( + , (ℕ × {𝑋}))‘𝑁) + 𝑋))
2011, 17, 193eqtr4d 2774 1 ((𝑁 ∈ ℕ ∧ 𝑋𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4579   × cxp 5621  cfv 6486  (class class class)co 7353  1c1 11029   + caddc 11031  cn 12146  cuz 12753  seqcseq 13926  Basecbs 17138  +gcplusg 17179  .gcmg 18964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-seq 13927  df-mulg 18965
This theorem is referenced by:  mulg2  18980  mulgnn0p1  18982  mulgnnass  19006  ofldchr  21501  psdpw  22073  chfacfpmmulgsum2  22768  xrsmulgzz  32976  ringexp0nn  42110
  Copyright terms: Public domain W3C validator