Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blennnt2 Structured version   Visualization version   GIF version

Theorem blennnt2 48515
Description: The binary length of a positive integer, doubled and increased by 1, is the binary length of the integer plus 1. (Contributed by AV, 30-May-2010.)
Assertion
Ref Expression
blennnt2 (𝑁 ∈ ℕ → (#b‘(2 · 𝑁)) = ((#b𝑁) + 1))

Proof of Theorem blennnt2
StepHypRef Expression
1 2nn 12340 . . . . 5 2 ∈ ℕ
21a1i 11 . . . 4 (𝑁 ∈ ℕ → 2 ∈ ℕ)
3 id 22 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
42, 3nnmulcld 12320 . . 3 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℕ)
5 blennn 48501 . . 3 ((2 · 𝑁) ∈ ℕ → (#b‘(2 · 𝑁)) = ((⌊‘(2 logb (2 · 𝑁))) + 1))
64, 5syl 17 . 2 (𝑁 ∈ ℕ → (#b‘(2 · 𝑁)) = ((⌊‘(2 logb (2 · 𝑁))) + 1))
7 2cn 12342 . . . . . . . . 9 2 ∈ ℂ
87a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℂ)
9 nncn 12275 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
108, 9mulcomd 11283 . . . . . . 7 (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 · 2))
1110oveq2d 7448 . . . . . 6 (𝑁 ∈ ℕ → (2 logb (2 · 𝑁)) = (2 logb (𝑁 · 2)))
12 2z 12651 . . . . . . . . 9 2 ∈ ℤ
13 uzid 12894 . . . . . . . . 9 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
1412, 13ax-mp 5 . . . . . . . 8 2 ∈ (ℤ‘2)
15 eluz2cnn0n1 48433 . . . . . . . 8 (2 ∈ (ℤ‘2) → 2 ∈ (ℂ ∖ {0, 1}))
1614, 15mp1i 13 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ (ℂ ∖ {0, 1}))
17 nnrp 13047 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
18 2rp 13040 . . . . . . . 8 2 ∈ ℝ+
1918a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
20 relogbmul 26821 . . . . . . 7 ((2 ∈ (ℂ ∖ {0, 1}) ∧ (𝑁 ∈ ℝ+ ∧ 2 ∈ ℝ+)) → (2 logb (𝑁 · 2)) = ((2 logb 𝑁) + (2 logb 2)))
2116, 17, 19, 20syl12anc 836 . . . . . 6 (𝑁 ∈ ℕ → (2 logb (𝑁 · 2)) = ((2 logb 𝑁) + (2 logb 2)))
22 2ne0 12371 . . . . . . . . 9 2 ≠ 0
23 1ne2 12475 . . . . . . . . . 10 1 ≠ 2
2423necomi 2994 . . . . . . . . 9 2 ≠ 1
257, 22, 243pm3.2i 1339 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1)
26 logbid1 26812 . . . . . . . 8 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 2) = 1)
2725, 26mp1i 13 . . . . . . 7 (𝑁 ∈ ℕ → (2 logb 2) = 1)
2827oveq2d 7448 . . . . . 6 (𝑁 ∈ ℕ → ((2 logb 𝑁) + (2 logb 2)) = ((2 logb 𝑁) + 1))
2911, 21, 283eqtrd 2780 . . . . 5 (𝑁 ∈ ℕ → (2 logb (2 · 𝑁)) = ((2 logb 𝑁) + 1))
3029fveq2d 6909 . . . 4 (𝑁 ∈ ℕ → (⌊‘(2 logb (2 · 𝑁))) = (⌊‘((2 logb 𝑁) + 1)))
3124a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 2 ≠ 1)
32 relogbcl 26817 . . . . . 6 ((2 ∈ ℝ+𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ)
3319, 17, 31, 32syl3anc 1372 . . . . 5 (𝑁 ∈ ℕ → (2 logb 𝑁) ∈ ℝ)
34 1zzd 12650 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ ℤ)
35 fladdz 13866 . . . . 5 (((2 logb 𝑁) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((2 logb 𝑁) + 1)) = ((⌊‘(2 logb 𝑁)) + 1))
3633, 34, 35syl2anc 584 . . . 4 (𝑁 ∈ ℕ → (⌊‘((2 logb 𝑁) + 1)) = ((⌊‘(2 logb 𝑁)) + 1))
3730, 36eqtrd 2776 . . 3 (𝑁 ∈ ℕ → (⌊‘(2 logb (2 · 𝑁))) = ((⌊‘(2 logb 𝑁)) + 1))
3837oveq1d 7447 . 2 (𝑁 ∈ ℕ → ((⌊‘(2 logb (2 · 𝑁))) + 1) = (((⌊‘(2 logb 𝑁)) + 1) + 1))
39 blennn 48501 . . . 4 (𝑁 ∈ ℕ → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
4039eqcomd 2742 . . 3 (𝑁 ∈ ℕ → ((⌊‘(2 logb 𝑁)) + 1) = (#b𝑁))
4140oveq1d 7447 . 2 (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) + 1) + 1) = ((#b𝑁) + 1))
426, 38, 413eqtrd 2780 1 (𝑁 ∈ ℕ → (#b‘(2 · 𝑁)) = ((#b𝑁) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  wne 2939  cdif 3947  {cpr 4627  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  cn 12267  2c2 12322  cz 12615  cuz 12879  +crp 13035  cfl 13831   logb clogb 26808  #bcblen 48495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-ef 16104  df-sin 16106  df-cos 16107  df-pi 16109  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903  df-log 26599  df-logb 26809  df-blen 48496
This theorem is referenced by:  blennn0em1  48517
  Copyright terms: Public domain W3C validator