Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blennngt2o2 Structured version   Visualization version   GIF version

Theorem blennngt2o2 48585
Description: The binary length of an odd integer greater than 1 is the binary length of the half of the integer decreased by 1, increased by 1. (Contributed by AV, 3-Jun-2020.)
Assertion
Ref Expression
blennngt2o2 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b𝑁) = ((#b‘((𝑁 − 1) / 2)) + 1))

Proof of Theorem blennngt2o2
StepHypRef Expression
1 2rp 12963 . . . . . . . 8 2 ∈ ℝ+
2 1ne2 12396 . . . . . . . . 9 1 ≠ 2
32necomi 2980 . . . . . . . 8 2 ≠ 1
4 eldifsn 4753 . . . . . . . 8 (2 ∈ (ℝ+ ∖ {1}) ↔ (2 ∈ ℝ+ ∧ 2 ≠ 1))
51, 3, 4mpbir2an 711 . . . . . . 7 2 ∈ (ℝ+ ∖ {1})
6 uz2m1nn 12889 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
76nnrpd 13000 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℝ+)
87adantr 480 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 − 1) ∈ ℝ+)
9 relogbdivb 48555 . . . . . . 7 ((2 ∈ (ℝ+ ∖ {1}) ∧ (𝑁 − 1) ∈ ℝ+) → (2 logb ((𝑁 − 1) / 2)) = ((2 logb (𝑁 − 1)) − 1))
105, 8, 9sylancr 587 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2 logb ((𝑁 − 1) / 2)) = ((2 logb (𝑁 − 1)) − 1))
1110fveq2d 6865 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(2 logb ((𝑁 − 1) / 2))) = (⌊‘((2 logb (𝑁 − 1)) − 1)))
1211oveq1d 7405 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) = ((⌊‘((2 logb (𝑁 − 1)) − 1)) + 1))
131a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ+)
143a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ≠ 1)
15 relogbcl 26690 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ (𝑁 − 1) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (𝑁 − 1)) ∈ ℝ)
1613, 7, 14, 15syl3anc 1373 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 logb (𝑁 − 1)) ∈ ℝ)
17 1z 12570 . . . . . . . 8 1 ∈ ℤ
1816, 17jctir 520 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((2 logb (𝑁 − 1)) ∈ ℝ ∧ 1 ∈ ℤ))
1918adantr 480 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((2 logb (𝑁 − 1)) ∈ ℝ ∧ 1 ∈ ℤ))
20 flsubz 48515 . . . . . 6 (((2 logb (𝑁 − 1)) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((2 logb (𝑁 − 1)) − 1)) = ((⌊‘(2 logb (𝑁 − 1))) − 1))
2119, 20syl 17 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘((2 logb (𝑁 − 1)) − 1)) = ((⌊‘(2 logb (𝑁 − 1))) − 1))
2221oveq1d 7405 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘((2 logb (𝑁 − 1)) − 1)) + 1) = (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1))
2316flcld 13767 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (⌊‘(2 logb (𝑁 − 1))) ∈ ℤ)
2423zcnd 12646 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (⌊‘(2 logb (𝑁 − 1))) ∈ ℂ)
25 npcan1 11610 . . . . . . 7 ((⌊‘(2 logb (𝑁 − 1))) ∈ ℂ → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb (𝑁 − 1))))
2624, 25syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb (𝑁 − 1))))
2726adantr 480 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb (𝑁 − 1))))
28 eluz2nn 12854 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2928peano2nnd 12210 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℕ)
3029nnred 12208 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℝ)
31 2re 12267 . . . . . . . . . 10 2 ∈ ℝ
3231a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ)
33 eluzge2nn0 12858 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
34 nn0p1gt0 12478 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
3533, 34syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 0 < (𝑁 + 1))
36 2pos 12296 . . . . . . . . . 10 0 < 2
3736a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 0 < 2)
3830, 32, 35, 37divgt0d 12125 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 0 < ((𝑁 + 1) / 2))
39 nn0z 12561 . . . . . . . 8 (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ)
4038, 39anim12ci 614 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2)))
41 elnnz 12546 . . . . . . 7 (((𝑁 + 1) / 2) ∈ ℕ ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2)))
4240, 41sylibr 234 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 + 1) / 2) ∈ ℕ)
43 nnolog2flm1 48583 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))
4442, 43syldan 591 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))
4527, 44eqtr4d 2768 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb 𝑁)))
4612, 22, 453eqtrd 2769 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) = (⌊‘(2 logb 𝑁)))
4746oveq1d 7405 . 2 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) + 1) = ((⌊‘(2 logb 𝑁)) + 1))
48 nno 16359 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)
49 blennn 48568 . . . 4 (((𝑁 − 1) / 2) ∈ ℕ → (#b‘((𝑁 − 1) / 2)) = ((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1))
5049oveq1d 7405 . . 3 (((𝑁 − 1) / 2) ∈ ℕ → ((#b‘((𝑁 − 1) / 2)) + 1) = (((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) + 1))
5148, 50syl 17 . 2 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((#b‘((𝑁 − 1) / 2)) + 1) = (((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) + 1))
52 blennn 48568 . . . 4 (𝑁 ∈ ℕ → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
5328, 52syl 17 . . 3 (𝑁 ∈ (ℤ‘2) → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
5453adantr 480 . 2 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
5547, 51, 543eqtr4rd 2776 1 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b𝑁) = ((#b‘((𝑁 − 1) / 2)) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  cdif 3914  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cmin 11412   / cdiv 11842  cn 12193  2c2 12248  0cn0 12449  cz 12536  cuz 12800  +crp 12958  cfl 13759   logb clogb 26681  #bcblen 48562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-cxp 26473  df-logb 26682  df-blen 48563
This theorem is referenced by:  blengt1fldiv2p1  48586  nn0sumshdiglemB  48613
  Copyright terms: Public domain W3C validator