Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blennngt2o2 Structured version   Visualization version   GIF version

Theorem blennngt2o2 48513
Description: The binary length of an odd integer greater than 1 is the binary length of the half of the integer decreased by 1, increased by 1. (Contributed by AV, 3-Jun-2020.)
Assertion
Ref Expression
blennngt2o2 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b𝑁) = ((#b‘((𝑁 − 1) / 2)) + 1))

Proof of Theorem blennngt2o2
StepHypRef Expression
1 2rp 13039 . . . . . . . 8 2 ∈ ℝ+
2 1ne2 12474 . . . . . . . . 9 1 ≠ 2
32necomi 2995 . . . . . . . 8 2 ≠ 1
4 eldifsn 4786 . . . . . . . 8 (2 ∈ (ℝ+ ∖ {1}) ↔ (2 ∈ ℝ+ ∧ 2 ≠ 1))
51, 3, 4mpbir2an 711 . . . . . . 7 2 ∈ (ℝ+ ∖ {1})
6 uz2m1nn 12965 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
76nnrpd 13075 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℝ+)
87adantr 480 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 − 1) ∈ ℝ+)
9 relogbdivb 48483 . . . . . . 7 ((2 ∈ (ℝ+ ∖ {1}) ∧ (𝑁 − 1) ∈ ℝ+) → (2 logb ((𝑁 − 1) / 2)) = ((2 logb (𝑁 − 1)) − 1))
105, 8, 9sylancr 587 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2 logb ((𝑁 − 1) / 2)) = ((2 logb (𝑁 − 1)) − 1))
1110fveq2d 6910 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(2 logb ((𝑁 − 1) / 2))) = (⌊‘((2 logb (𝑁 − 1)) − 1)))
1211oveq1d 7446 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) = ((⌊‘((2 logb (𝑁 − 1)) − 1)) + 1))
131a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ+)
143a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ≠ 1)
15 relogbcl 26816 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ (𝑁 − 1) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (𝑁 − 1)) ∈ ℝ)
1613, 7, 14, 15syl3anc 1373 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 logb (𝑁 − 1)) ∈ ℝ)
17 1z 12647 . . . . . . . 8 1 ∈ ℤ
1816, 17jctir 520 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((2 logb (𝑁 − 1)) ∈ ℝ ∧ 1 ∈ ℤ))
1918adantr 480 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((2 logb (𝑁 − 1)) ∈ ℝ ∧ 1 ∈ ℤ))
20 flsubz 48439 . . . . . 6 (((2 logb (𝑁 − 1)) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((2 logb (𝑁 − 1)) − 1)) = ((⌊‘(2 logb (𝑁 − 1))) − 1))
2119, 20syl 17 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘((2 logb (𝑁 − 1)) − 1)) = ((⌊‘(2 logb (𝑁 − 1))) − 1))
2221oveq1d 7446 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘((2 logb (𝑁 − 1)) − 1)) + 1) = (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1))
2316flcld 13838 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (⌊‘(2 logb (𝑁 − 1))) ∈ ℤ)
2423zcnd 12723 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (⌊‘(2 logb (𝑁 − 1))) ∈ ℂ)
25 npcan1 11688 . . . . . . 7 ((⌊‘(2 logb (𝑁 − 1))) ∈ ℂ → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb (𝑁 − 1))))
2624, 25syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb (𝑁 − 1))))
2726adantr 480 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb (𝑁 − 1))))
28 eluz2nn 12924 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2928peano2nnd 12283 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℕ)
3029nnred 12281 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℝ)
31 2re 12340 . . . . . . . . . 10 2 ∈ ℝ
3231a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ)
33 eluzge2nn0 12929 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
34 nn0p1gt0 12555 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
3533, 34syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 0 < (𝑁 + 1))
36 2pos 12369 . . . . . . . . . 10 0 < 2
3736a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 0 < 2)
3830, 32, 35, 37divgt0d 12203 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 0 < ((𝑁 + 1) / 2))
39 nn0z 12638 . . . . . . . 8 (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ)
4038, 39anim12ci 614 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2)))
41 elnnz 12623 . . . . . . 7 (((𝑁 + 1) / 2) ∈ ℕ ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2)))
4240, 41sylibr 234 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 + 1) / 2) ∈ ℕ)
43 nnolog2flm1 48511 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))
4442, 43syldan 591 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))
4527, 44eqtr4d 2780 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb 𝑁)))
4612, 22, 453eqtrd 2781 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) = (⌊‘(2 logb 𝑁)))
4746oveq1d 7446 . 2 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) + 1) = ((⌊‘(2 logb 𝑁)) + 1))
48 nno 16419 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)
49 blennn 48496 . . . 4 (((𝑁 − 1) / 2) ∈ ℕ → (#b‘((𝑁 − 1) / 2)) = ((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1))
5049oveq1d 7446 . . 3 (((𝑁 − 1) / 2) ∈ ℕ → ((#b‘((𝑁 − 1) / 2)) + 1) = (((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) + 1))
5148, 50syl 17 . 2 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((#b‘((𝑁 − 1) / 2)) + 1) = (((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) + 1))
52 blennn 48496 . . . 4 (𝑁 ∈ ℕ → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
5328, 52syl 17 . . 3 (𝑁 ∈ (ℤ‘2) → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
5453adantr 480 . 2 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
5547, 51, 543eqtr4rd 2788 1 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b𝑁) = ((#b‘((𝑁 − 1) / 2)) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  cdif 3948  {csn 4626   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   < clt 11295  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  +crp 13034  cfl 13830   logb clogb 26807  #bcblen 48490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599  df-logb 26808  df-blen 48491
This theorem is referenced by:  blengt1fldiv2p1  48514  nn0sumshdiglemB  48541
  Copyright terms: Public domain W3C validator