![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > blennngt2o2 | Structured version Visualization version GIF version |
Description: The binary length of an odd integer greater than 1 is the binary length of the half of the integer decreased by 1, increased by 1. (Contributed by AV, 3-Jun-2020.) |
Ref | Expression |
---|---|
blennngt2o2 | ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b‘𝑁) = ((#b‘((𝑁 − 1) / 2)) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rp 12124 | . . . . . . . 8 ⊢ 2 ∈ ℝ+ | |
2 | 1ne2 11573 | . . . . . . . . 9 ⊢ 1 ≠ 2 | |
3 | 2 | necomi 3053 | . . . . . . . 8 ⊢ 2 ≠ 1 |
4 | eldifsn 4538 | . . . . . . . 8 ⊢ (2 ∈ (ℝ+ ∖ {1}) ↔ (2 ∈ ℝ+ ∧ 2 ≠ 1)) | |
5 | 1, 3, 4 | mpbir2an 702 | . . . . . . 7 ⊢ 2 ∈ (ℝ+ ∖ {1}) |
6 | uz2m1nn 12053 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) | |
7 | 6 | nnrpd 12161 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℝ+) |
8 | 7 | adantr 474 | . . . . . . 7 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 − 1) ∈ ℝ+) |
9 | relogbdivb 43217 | . . . . . . 7 ⊢ ((2 ∈ (ℝ+ ∖ {1}) ∧ (𝑁 − 1) ∈ ℝ+) → (2 logb ((𝑁 − 1) / 2)) = ((2 logb (𝑁 − 1)) − 1)) | |
10 | 5, 8, 9 | sylancr 581 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2 logb ((𝑁 − 1) / 2)) = ((2 logb (𝑁 − 1)) − 1)) |
11 | 10 | fveq2d 6441 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(2 logb ((𝑁 − 1) / 2))) = (⌊‘((2 logb (𝑁 − 1)) − 1))) |
12 | 11 | oveq1d 6925 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) = ((⌊‘((2 logb (𝑁 − 1)) − 1)) + 1)) |
13 | 1 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ∈ ℝ+) |
14 | 3 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ≠ 1) |
15 | relogbcl 24920 | . . . . . . . . 9 ⊢ ((2 ∈ ℝ+ ∧ (𝑁 − 1) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (𝑁 − 1)) ∈ ℝ) | |
16 | 13, 7, 14, 15 | syl3anc 1494 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → (2 logb (𝑁 − 1)) ∈ ℝ) |
17 | 1z 11742 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
18 | 16, 17 | jctir 516 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((2 logb (𝑁 − 1)) ∈ ℝ ∧ 1 ∈ ℤ)) |
19 | 18 | adantr 474 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((2 logb (𝑁 − 1)) ∈ ℝ ∧ 1 ∈ ℤ)) |
20 | flsubz 43173 | . . . . . 6 ⊢ (((2 logb (𝑁 − 1)) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((2 logb (𝑁 − 1)) − 1)) = ((⌊‘(2 logb (𝑁 − 1))) − 1)) | |
21 | 19, 20 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘((2 logb (𝑁 − 1)) − 1)) = ((⌊‘(2 logb (𝑁 − 1))) − 1)) |
22 | 21 | oveq1d 6925 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘((2 logb (𝑁 − 1)) − 1)) + 1) = (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1)) |
23 | 16 | flcld 12901 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(2 logb (𝑁 − 1))) ∈ ℤ) |
24 | 23 | zcnd 11818 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(2 logb (𝑁 − 1))) ∈ ℂ) |
25 | npcan1 10786 | . . . . . . 7 ⊢ ((⌊‘(2 logb (𝑁 − 1))) ∈ ℂ → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb (𝑁 − 1)))) | |
26 | 24, 25 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb (𝑁 − 1)))) |
27 | 26 | adantr 474 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb (𝑁 − 1)))) |
28 | eluz2nn 12015 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
29 | 28 | peano2nnd 11376 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 + 1) ∈ ℕ) |
30 | 29 | nnred 11374 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 + 1) ∈ ℝ) |
31 | 2re 11432 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
32 | 31 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ∈ ℝ) |
33 | eluzge2nn0 12016 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ0) | |
34 | nn0p1gt0 11656 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1)) | |
35 | 33, 34 | syl 17 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 0 < (𝑁 + 1)) |
36 | 2pos 11468 | . . . . . . . . . 10 ⊢ 0 < 2 | |
37 | 36 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 0 < 2) |
38 | 30, 32, 35, 37 | divgt0d 11296 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → 0 < ((𝑁 + 1) / 2)) |
39 | nn0z 11735 | . . . . . . . 8 ⊢ (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ) | |
40 | 38, 39 | anim12ci 607 | . . . . . . 7 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2))) |
41 | elnnz 11721 | . . . . . . 7 ⊢ (((𝑁 + 1) / 2) ∈ ℕ ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2))) | |
42 | 40, 41 | sylibr 226 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 + 1) / 2) ∈ ℕ) |
43 | nnolog2flm1 43245 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1)))) | |
44 | 42, 43 | syldan 585 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1)))) |
45 | 27, 44 | eqtr4d 2864 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb 𝑁))) |
46 | 12, 22, 45 | 3eqtrd 2865 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) = (⌊‘(2 logb 𝑁))) |
47 | 46 | oveq1d 6925 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) + 1) = ((⌊‘(2 logb 𝑁)) + 1)) |
48 | nno 15479 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ) | |
49 | blennn 43230 | . . . 4 ⊢ (((𝑁 − 1) / 2) ∈ ℕ → (#b‘((𝑁 − 1) / 2)) = ((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1)) | |
50 | 49 | oveq1d 6925 | . . 3 ⊢ (((𝑁 − 1) / 2) ∈ ℕ → ((#b‘((𝑁 − 1) / 2)) + 1) = (((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) + 1)) |
51 | 48, 50 | syl 17 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((#b‘((𝑁 − 1) / 2)) + 1) = (((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) + 1)) |
52 | blennn 43230 | . . . 4 ⊢ (𝑁 ∈ ℕ → (#b‘𝑁) = ((⌊‘(2 logb 𝑁)) + 1)) | |
53 | 28, 52 | syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (#b‘𝑁) = ((⌊‘(2 logb 𝑁)) + 1)) |
54 | 53 | adantr 474 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b‘𝑁) = ((⌊‘(2 logb 𝑁)) + 1)) |
55 | 47, 51, 54 | 3eqtr4rd 2872 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b‘𝑁) = ((#b‘((𝑁 − 1) / 2)) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ≠ wne 2999 ∖ cdif 3795 {csn 4399 class class class wbr 4875 ‘cfv 6127 (class class class)co 6910 ℂcc 10257 ℝcr 10258 0cc0 10259 1c1 10260 + caddc 10262 < clt 10398 − cmin 10592 / cdiv 11016 ℕcn 11357 2c2 11413 ℕ0cn0 11625 ℤcz 11711 ℤ≥cuz 11975 ℝ+crp 12119 ⌊cfl 12893 logb clogb 24911 #bcblen 43224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-inf2 8822 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 ax-addf 10338 ax-mulf 10339 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-iin 4745 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-se 5306 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-isom 6136 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-of 7162 df-om 7332 df-1st 7433 df-2nd 7434 df-supp 7565 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-2o 7832 df-oadd 7835 df-er 8014 df-map 8129 df-pm 8130 df-ixp 8182 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-fsupp 8551 df-fi 8592 df-sup 8623 df-inf 8624 df-oi 8691 df-card 9085 df-cda 9312 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-dec 11829 df-uz 11976 df-q 12079 df-rp 12120 df-xneg 12239 df-xadd 12240 df-xmul 12241 df-ioo 12474 df-ioc 12475 df-ico 12476 df-icc 12477 df-fz 12627 df-fzo 12768 df-fl 12895 df-mod 12971 df-seq 13103 df-exp 13162 df-fac 13361 df-bc 13390 df-hash 13418 df-shft 14191 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-abs 14360 df-limsup 14586 df-clim 14603 df-rlim 14604 df-sum 14801 df-ef 15177 df-sin 15179 df-cos 15180 df-pi 15182 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-ress 16237 df-plusg 16325 df-mulr 16326 df-starv 16327 df-sca 16328 df-vsca 16329 df-ip 16330 df-tset 16331 df-ple 16332 df-ds 16334 df-unif 16335 df-hom 16336 df-cco 16337 df-rest 16443 df-topn 16444 df-0g 16462 df-gsum 16463 df-topgen 16464 df-pt 16465 df-prds 16468 df-xrs 16522 df-qtop 16527 df-imas 16528 df-xps 16530 df-mre 16606 df-mrc 16607 df-acs 16609 df-mgm 17602 df-sgrp 17644 df-mnd 17655 df-submnd 17696 df-mulg 17902 df-cntz 18107 df-cmn 18555 df-psmet 20105 df-xmet 20106 df-met 20107 df-bl 20108 df-mopn 20109 df-fbas 20110 df-fg 20111 df-cnfld 20114 df-top 21076 df-topon 21093 df-topsp 21115 df-bases 21128 df-cld 21201 df-ntr 21202 df-cls 21203 df-nei 21280 df-lp 21318 df-perf 21319 df-cn 21409 df-cnp 21410 df-haus 21497 df-tx 21743 df-hmeo 21936 df-fil 22027 df-fm 22119 df-flim 22120 df-flf 22121 df-xms 22502 df-ms 22503 df-tms 22504 df-cncf 23058 df-limc 24036 df-dv 24037 df-log 24709 df-cxp 24710 df-logb 24912 df-blen 43225 |
This theorem is referenced by: blengt1fldiv2p1 43248 nn0sumshdiglemB 43275 |
Copyright terms: Public domain | W3C validator |