Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blennngt2o2 Structured version   Visualization version   GIF version

Theorem blennngt2o2 43247
Description: The binary length of an odd integer greater than 1 is the binary length of the half of the integer decreased by 1, increased by 1. (Contributed by AV, 3-Jun-2020.)
Assertion
Ref Expression
blennngt2o2 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b𝑁) = ((#b‘((𝑁 − 1) / 2)) + 1))

Proof of Theorem blennngt2o2
StepHypRef Expression
1 2rp 12124 . . . . . . . 8 2 ∈ ℝ+
2 1ne2 11573 . . . . . . . . 9 1 ≠ 2
32necomi 3053 . . . . . . . 8 2 ≠ 1
4 eldifsn 4538 . . . . . . . 8 (2 ∈ (ℝ+ ∖ {1}) ↔ (2 ∈ ℝ+ ∧ 2 ≠ 1))
51, 3, 4mpbir2an 702 . . . . . . 7 2 ∈ (ℝ+ ∖ {1})
6 uz2m1nn 12053 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
76nnrpd 12161 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℝ+)
87adantr 474 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 − 1) ∈ ℝ+)
9 relogbdivb 43217 . . . . . . 7 ((2 ∈ (ℝ+ ∖ {1}) ∧ (𝑁 − 1) ∈ ℝ+) → (2 logb ((𝑁 − 1) / 2)) = ((2 logb (𝑁 − 1)) − 1))
105, 8, 9sylancr 581 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2 logb ((𝑁 − 1) / 2)) = ((2 logb (𝑁 − 1)) − 1))
1110fveq2d 6441 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(2 logb ((𝑁 − 1) / 2))) = (⌊‘((2 logb (𝑁 − 1)) − 1)))
1211oveq1d 6925 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) = ((⌊‘((2 logb (𝑁 − 1)) − 1)) + 1))
131a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ+)
143a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ≠ 1)
15 relogbcl 24920 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ (𝑁 − 1) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (𝑁 − 1)) ∈ ℝ)
1613, 7, 14, 15syl3anc 1494 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 logb (𝑁 − 1)) ∈ ℝ)
17 1z 11742 . . . . . . . 8 1 ∈ ℤ
1816, 17jctir 516 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((2 logb (𝑁 − 1)) ∈ ℝ ∧ 1 ∈ ℤ))
1918adantr 474 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((2 logb (𝑁 − 1)) ∈ ℝ ∧ 1 ∈ ℤ))
20 flsubz 43173 . . . . . 6 (((2 logb (𝑁 − 1)) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((2 logb (𝑁 − 1)) − 1)) = ((⌊‘(2 logb (𝑁 − 1))) − 1))
2119, 20syl 17 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘((2 logb (𝑁 − 1)) − 1)) = ((⌊‘(2 logb (𝑁 − 1))) − 1))
2221oveq1d 6925 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘((2 logb (𝑁 − 1)) − 1)) + 1) = (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1))
2316flcld 12901 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (⌊‘(2 logb (𝑁 − 1))) ∈ ℤ)
2423zcnd 11818 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (⌊‘(2 logb (𝑁 − 1))) ∈ ℂ)
25 npcan1 10786 . . . . . . 7 ((⌊‘(2 logb (𝑁 − 1))) ∈ ℂ → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb (𝑁 − 1))))
2624, 25syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb (𝑁 − 1))))
2726adantr 474 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb (𝑁 − 1))))
28 eluz2nn 12015 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2928peano2nnd 11376 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℕ)
3029nnred 11374 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℝ)
31 2re 11432 . . . . . . . . . 10 2 ∈ ℝ
3231a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ)
33 eluzge2nn0 12016 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
34 nn0p1gt0 11656 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
3533, 34syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 0 < (𝑁 + 1))
36 2pos 11468 . . . . . . . . . 10 0 < 2
3736a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 0 < 2)
3830, 32, 35, 37divgt0d 11296 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 0 < ((𝑁 + 1) / 2))
39 nn0z 11735 . . . . . . . 8 (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ)
4038, 39anim12ci 607 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2)))
41 elnnz 11721 . . . . . . 7 (((𝑁 + 1) / 2) ∈ ℕ ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2)))
4240, 41sylibr 226 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 + 1) / 2) ∈ ℕ)
43 nnolog2flm1 43245 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))
4442, 43syldan 585 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))
4527, 44eqtr4d 2864 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb 𝑁)))
4612, 22, 453eqtrd 2865 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) = (⌊‘(2 logb 𝑁)))
4746oveq1d 6925 . 2 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) + 1) = ((⌊‘(2 logb 𝑁)) + 1))
48 nno 15479 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)
49 blennn 43230 . . . 4 (((𝑁 − 1) / 2) ∈ ℕ → (#b‘((𝑁 − 1) / 2)) = ((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1))
5049oveq1d 6925 . . 3 (((𝑁 − 1) / 2) ∈ ℕ → ((#b‘((𝑁 − 1) / 2)) + 1) = (((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) + 1))
5148, 50syl 17 . 2 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((#b‘((𝑁 − 1) / 2)) + 1) = (((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) + 1))
52 blennn 43230 . . . 4 (𝑁 ∈ ℕ → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
5328, 52syl 17 . . 3 (𝑁 ∈ (ℤ‘2) → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
5453adantr 474 . 2 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
5547, 51, 543eqtr4rd 2872 1 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b𝑁) = ((#b‘((𝑁 − 1) / 2)) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  wne 2999  cdif 3795  {csn 4399   class class class wbr 4875  cfv 6127  (class class class)co 6910  cc 10257  cr 10258  0cc0 10259  1c1 10260   + caddc 10262   < clt 10398  cmin 10592   / cdiv 11016  cn 11357  2c2 11413  0cn0 11625  cz 11711  cuz 11975  +crp 12119  cfl 12893   logb clogb 24911  #bcblen 43224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-inf2 8822  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338  ax-mulf 10339
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-iin 4745  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-se 5306  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-isom 6136  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-of 7162  df-om 7332  df-1st 7433  df-2nd 7434  df-supp 7565  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-2o 7832  df-oadd 7835  df-er 8014  df-map 8129  df-pm 8130  df-ixp 8182  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-fsupp 8551  df-fi 8592  df-sup 8623  df-inf 8624  df-oi 8691  df-card 9085  df-cda 9312  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-q 12079  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-ioo 12474  df-ioc 12475  df-ico 12476  df-icc 12477  df-fz 12627  df-fzo 12768  df-fl 12895  df-mod 12971  df-seq 13103  df-exp 13162  df-fac 13361  df-bc 13390  df-hash 13418  df-shft 14191  df-cj 14223  df-re 14224  df-im 14225  df-sqrt 14359  df-abs 14360  df-limsup 14586  df-clim 14603  df-rlim 14604  df-sum 14801  df-ef 15177  df-sin 15179  df-cos 15180  df-pi 15182  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-starv 16327  df-sca 16328  df-vsca 16329  df-ip 16330  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-hom 16336  df-cco 16337  df-rest 16443  df-topn 16444  df-0g 16462  df-gsum 16463  df-topgen 16464  df-pt 16465  df-prds 16468  df-xrs 16522  df-qtop 16527  df-imas 16528  df-xps 16530  df-mre 16606  df-mrc 16607  df-acs 16609  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-submnd 17696  df-mulg 17902  df-cntz 18107  df-cmn 18555  df-psmet 20105  df-xmet 20106  df-met 20107  df-bl 20108  df-mopn 20109  df-fbas 20110  df-fg 20111  df-cnfld 20114  df-top 21076  df-topon 21093  df-topsp 21115  df-bases 21128  df-cld 21201  df-ntr 21202  df-cls 21203  df-nei 21280  df-lp 21318  df-perf 21319  df-cn 21409  df-cnp 21410  df-haus 21497  df-tx 21743  df-hmeo 21936  df-fil 22027  df-fm 22119  df-flim 22120  df-flf 22121  df-xms 22502  df-ms 22503  df-tms 22504  df-cncf 23058  df-limc 24036  df-dv 24037  df-log 24709  df-cxp 24710  df-logb 24912  df-blen 43225
This theorem is referenced by:  blengt1fldiv2p1  43248  nn0sumshdiglemB  43275
  Copyright terms: Public domain W3C validator