Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blennngt2o2 Structured version   Visualization version   GIF version

Theorem blennngt2o2 47362
Description: The binary length of an odd integer greater than 1 is the binary length of the half of the integer decreased by 1, increased by 1. (Contributed by AV, 3-Jun-2020.)
Assertion
Ref Expression
blennngt2o2 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b𝑁) = ((#b‘((𝑁 − 1) / 2)) + 1))

Proof of Theorem blennngt2o2
StepHypRef Expression
1 2rp 12981 . . . . . . . 8 2 ∈ ℝ+
2 1ne2 12422 . . . . . . . . 9 1 ≠ 2
32necomi 2995 . . . . . . . 8 2 ≠ 1
4 eldifsn 4790 . . . . . . . 8 (2 ∈ (ℝ+ ∖ {1}) ↔ (2 ∈ ℝ+ ∧ 2 ≠ 1))
51, 3, 4mpbir2an 709 . . . . . . 7 2 ∈ (ℝ+ ∖ {1})
6 uz2m1nn 12909 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
76nnrpd 13016 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℝ+)
87adantr 481 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 − 1) ∈ ℝ+)
9 relogbdivb 47332 . . . . . . 7 ((2 ∈ (ℝ+ ∖ {1}) ∧ (𝑁 − 1) ∈ ℝ+) → (2 logb ((𝑁 − 1) / 2)) = ((2 logb (𝑁 − 1)) − 1))
105, 8, 9sylancr 587 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2 logb ((𝑁 − 1) / 2)) = ((2 logb (𝑁 − 1)) − 1))
1110fveq2d 6895 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(2 logb ((𝑁 − 1) / 2))) = (⌊‘((2 logb (𝑁 − 1)) − 1)))
1211oveq1d 7426 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) = ((⌊‘((2 logb (𝑁 − 1)) − 1)) + 1))
131a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ+)
143a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ≠ 1)
15 relogbcl 26285 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ (𝑁 − 1) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (𝑁 − 1)) ∈ ℝ)
1613, 7, 14, 15syl3anc 1371 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 logb (𝑁 − 1)) ∈ ℝ)
17 1z 12594 . . . . . . . 8 1 ∈ ℤ
1816, 17jctir 521 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((2 logb (𝑁 − 1)) ∈ ℝ ∧ 1 ∈ ℤ))
1918adantr 481 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((2 logb (𝑁 − 1)) ∈ ℝ ∧ 1 ∈ ℤ))
20 flsubz 47287 . . . . . 6 (((2 logb (𝑁 − 1)) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((2 logb (𝑁 − 1)) − 1)) = ((⌊‘(2 logb (𝑁 − 1))) − 1))
2119, 20syl 17 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘((2 logb (𝑁 − 1)) − 1)) = ((⌊‘(2 logb (𝑁 − 1))) − 1))
2221oveq1d 7426 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘((2 logb (𝑁 − 1)) − 1)) + 1) = (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1))
2316flcld 13765 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (⌊‘(2 logb (𝑁 − 1))) ∈ ℤ)
2423zcnd 12669 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (⌊‘(2 logb (𝑁 − 1))) ∈ ℂ)
25 npcan1 11641 . . . . . . 7 ((⌊‘(2 logb (𝑁 − 1))) ∈ ℂ → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb (𝑁 − 1))))
2624, 25syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb (𝑁 − 1))))
2726adantr 481 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb (𝑁 − 1))))
28 eluz2nn 12870 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2928peano2nnd 12231 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℕ)
3029nnred 12229 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℝ)
31 2re 12288 . . . . . . . . . 10 2 ∈ ℝ
3231a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ)
33 eluzge2nn0 12873 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
34 nn0p1gt0 12503 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
3533, 34syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 0 < (𝑁 + 1))
36 2pos 12317 . . . . . . . . . 10 0 < 2
3736a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 0 < 2)
3830, 32, 35, 37divgt0d 12151 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 0 < ((𝑁 + 1) / 2))
39 nn0z 12585 . . . . . . . 8 (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ)
4038, 39anim12ci 614 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2)))
41 elnnz 12570 . . . . . . 7 (((𝑁 + 1) / 2) ∈ ℕ ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2)))
4240, 41sylibr 233 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 + 1) / 2) ∈ ℕ)
43 nnolog2flm1 47360 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))
4442, 43syldan 591 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))
4527, 44eqtr4d 2775 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb 𝑁)))
4612, 22, 453eqtrd 2776 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) = (⌊‘(2 logb 𝑁)))
4746oveq1d 7426 . 2 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) + 1) = ((⌊‘(2 logb 𝑁)) + 1))
48 nno 16327 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)
49 blennn 47345 . . . 4 (((𝑁 − 1) / 2) ∈ ℕ → (#b‘((𝑁 − 1) / 2)) = ((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1))
5049oveq1d 7426 . . 3 (((𝑁 − 1) / 2) ∈ ℕ → ((#b‘((𝑁 − 1) / 2)) + 1) = (((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) + 1))
5148, 50syl 17 . 2 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((#b‘((𝑁 − 1) / 2)) + 1) = (((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) + 1))
52 blennn 47345 . . . 4 (𝑁 ∈ ℕ → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
5328, 52syl 17 . . 3 (𝑁 ∈ (ℤ‘2) → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
5453adantr 481 . 2 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
5547, 51, 543eqtr4rd 2783 1 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b𝑁) = ((#b‘((𝑁 − 1) / 2)) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  cdif 3945  {csn 4628   class class class wbr 5148  cfv 6543  (class class class)co 7411  cc 11110  cr 11111  0cc0 11112  1c1 11113   + caddc 11115   < clt 11250  cmin 11446   / cdiv 11873  cn 12214  2c2 12269  0cn0 12474  cz 12560  cuz 12824  +crp 12976  cfl 13757   logb clogb 26276  #bcblen 47339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-div 11874  df-nn 12215  df-2 12277  df-3 12278  df-4 12279  df-5 12280  df-6 12281  df-7 12282  df-8 12283  df-9 12284  df-n0 12475  df-z 12561  df-dec 12680  df-uz 12825  df-q 12935  df-rp 12977  df-xneg 13094  df-xadd 13095  df-xmul 13096  df-ioo 13330  df-ioc 13331  df-ico 13332  df-icc 13333  df-fz 13487  df-fzo 13630  df-fl 13759  df-mod 13837  df-seq 13969  df-exp 14030  df-fac 14236  df-bc 14265  df-hash 14293  df-shft 15016  df-cj 15048  df-re 15049  df-im 15050  df-sqrt 15184  df-abs 15185  df-limsup 15417  df-clim 15434  df-rlim 15435  df-sum 15635  df-ef 16013  df-sin 16015  df-cos 16016  df-pi 16018  df-struct 17082  df-sets 17099  df-slot 17117  df-ndx 17129  df-base 17147  df-ress 17176  df-plusg 17212  df-mulr 17213  df-starv 17214  df-sca 17215  df-vsca 17216  df-ip 17217  df-tset 17218  df-ple 17219  df-ds 17221  df-unif 17222  df-hom 17223  df-cco 17224  df-rest 17370  df-topn 17371  df-0g 17389  df-gsum 17390  df-topgen 17391  df-pt 17392  df-prds 17395  df-xrs 17450  df-qtop 17455  df-imas 17456  df-xps 17458  df-mre 17532  df-mrc 17533  df-acs 17535  df-mgm 18563  df-sgrp 18612  df-mnd 18628  df-submnd 18674  df-mulg 18953  df-cntz 19183  df-cmn 19652  df-psmet 20942  df-xmet 20943  df-met 20944  df-bl 20945  df-mopn 20946  df-fbas 20947  df-fg 20948  df-cnfld 20951  df-top 22403  df-topon 22420  df-topsp 22442  df-bases 22456  df-cld 22530  df-ntr 22531  df-cls 22532  df-nei 22609  df-lp 22647  df-perf 22648  df-cn 22738  df-cnp 22739  df-haus 22826  df-tx 23073  df-hmeo 23266  df-fil 23357  df-fm 23449  df-flim 23450  df-flf 23451  df-xms 23833  df-ms 23834  df-tms 23835  df-cncf 24401  df-limc 25390  df-dv 25391  df-log 26072  df-cxp 26073  df-logb 26277  df-blen 47340
This theorem is referenced by:  blengt1fldiv2p1  47363  nn0sumshdiglemB  47390
  Copyright terms: Public domain W3C validator