![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > blennngt2o2 | Structured version Visualization version GIF version |
Description: The binary length of an odd integer greater than 1 is the binary length of the half of the integer decreased by 1, increased by 1. (Contributed by AV, 3-Jun-2020.) |
Ref | Expression |
---|---|
blennngt2o2 | ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b‘𝑁) = ((#b‘((𝑁 − 1) / 2)) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2rp 12981 | . . . . . . . 8 ⊢ 2 ∈ ℝ+ | |
2 | 1ne2 12422 | . . . . . . . . 9 ⊢ 1 ≠ 2 | |
3 | 2 | necomi 2995 | . . . . . . . 8 ⊢ 2 ≠ 1 |
4 | eldifsn 4790 | . . . . . . . 8 ⊢ (2 ∈ (ℝ+ ∖ {1}) ↔ (2 ∈ ℝ+ ∧ 2 ≠ 1)) | |
5 | 1, 3, 4 | mpbir2an 709 | . . . . . . 7 ⊢ 2 ∈ (ℝ+ ∖ {1}) |
6 | uz2m1nn 12909 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℕ) | |
7 | 6 | nnrpd 13016 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 − 1) ∈ ℝ+) |
8 | 7 | adantr 481 | . . . . . . 7 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 − 1) ∈ ℝ+) |
9 | relogbdivb 47332 | . . . . . . 7 ⊢ ((2 ∈ (ℝ+ ∖ {1}) ∧ (𝑁 − 1) ∈ ℝ+) → (2 logb ((𝑁 − 1) / 2)) = ((2 logb (𝑁 − 1)) − 1)) | |
10 | 5, 8, 9 | sylancr 587 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2 logb ((𝑁 − 1) / 2)) = ((2 logb (𝑁 − 1)) − 1)) |
11 | 10 | fveq2d 6895 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(2 logb ((𝑁 − 1) / 2))) = (⌊‘((2 logb (𝑁 − 1)) − 1))) |
12 | 11 | oveq1d 7426 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) = ((⌊‘((2 logb (𝑁 − 1)) − 1)) + 1)) |
13 | 1 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ∈ ℝ+) |
14 | 3 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ≠ 1) |
15 | relogbcl 26285 | . . . . . . . . 9 ⊢ ((2 ∈ ℝ+ ∧ (𝑁 − 1) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (𝑁 − 1)) ∈ ℝ) | |
16 | 13, 7, 14, 15 | syl3anc 1371 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → (2 logb (𝑁 − 1)) ∈ ℝ) |
17 | 1z 12594 | . . . . . . . 8 ⊢ 1 ∈ ℤ | |
18 | 16, 17 | jctir 521 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → ((2 logb (𝑁 − 1)) ∈ ℝ ∧ 1 ∈ ℤ)) |
19 | 18 | adantr 481 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((2 logb (𝑁 − 1)) ∈ ℝ ∧ 1 ∈ ℤ)) |
20 | flsubz 47287 | . . . . . 6 ⊢ (((2 logb (𝑁 − 1)) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((2 logb (𝑁 − 1)) − 1)) = ((⌊‘(2 logb (𝑁 − 1))) − 1)) | |
21 | 19, 20 | syl 17 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘((2 logb (𝑁 − 1)) − 1)) = ((⌊‘(2 logb (𝑁 − 1))) − 1)) |
22 | 21 | oveq1d 7426 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘((2 logb (𝑁 − 1)) − 1)) + 1) = (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1)) |
23 | 16 | flcld 13765 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(2 logb (𝑁 − 1))) ∈ ℤ) |
24 | 23 | zcnd 12669 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘2) → (⌊‘(2 logb (𝑁 − 1))) ∈ ℂ) |
25 | npcan1 11641 | . . . . . . 7 ⊢ ((⌊‘(2 logb (𝑁 − 1))) ∈ ℂ → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb (𝑁 − 1)))) | |
26 | 24, 25 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘2) → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb (𝑁 − 1)))) |
27 | 26 | adantr 481 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb (𝑁 − 1)))) |
28 | eluz2nn 12870 | . . . . . . . . . . 11 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ) | |
29 | 28 | peano2nnd 12231 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 + 1) ∈ ℕ) |
30 | 29 | nnred 12229 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → (𝑁 + 1) ∈ ℝ) |
31 | 2re 12288 | . . . . . . . . . 10 ⊢ 2 ∈ ℝ | |
32 | 31 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 2 ∈ ℝ) |
33 | eluzge2nn0 12873 | . . . . . . . . . 10 ⊢ (𝑁 ∈ (ℤ≥‘2) → 𝑁 ∈ ℕ0) | |
34 | nn0p1gt0 12503 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1)) | |
35 | 33, 34 | syl 17 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 0 < (𝑁 + 1)) |
36 | 2pos 12317 | . . . . . . . . . 10 ⊢ 0 < 2 | |
37 | 36 | a1i 11 | . . . . . . . . 9 ⊢ (𝑁 ∈ (ℤ≥‘2) → 0 < 2) |
38 | 30, 32, 35, 37 | divgt0d 12151 | . . . . . . . 8 ⊢ (𝑁 ∈ (ℤ≥‘2) → 0 < ((𝑁 + 1) / 2)) |
39 | nn0z 12585 | . . . . . . . 8 ⊢ (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ) | |
40 | 38, 39 | anim12ci 614 | . . . . . . 7 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2))) |
41 | elnnz 12570 | . . . . . . 7 ⊢ (((𝑁 + 1) / 2) ∈ ℕ ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2))) | |
42 | 40, 41 | sylibr 233 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 + 1) / 2) ∈ ℕ) |
43 | nnolog2flm1 47360 | . . . . . 6 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1)))) | |
44 | 42, 43 | syldan 591 | . . . . 5 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1)))) |
45 | 27, 44 | eqtr4d 2775 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb 𝑁))) |
46 | 12, 22, 45 | 3eqtrd 2776 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) = (⌊‘(2 logb 𝑁))) |
47 | 46 | oveq1d 7426 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) + 1) = ((⌊‘(2 logb 𝑁)) + 1)) |
48 | nno 16327 | . . 3 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ) | |
49 | blennn 47345 | . . . 4 ⊢ (((𝑁 − 1) / 2) ∈ ℕ → (#b‘((𝑁 − 1) / 2)) = ((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1)) | |
50 | 49 | oveq1d 7426 | . . 3 ⊢ (((𝑁 − 1) / 2) ∈ ℕ → ((#b‘((𝑁 − 1) / 2)) + 1) = (((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) + 1)) |
51 | 48, 50 | syl 17 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((#b‘((𝑁 − 1) / 2)) + 1) = (((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) + 1)) |
52 | blennn 47345 | . . . 4 ⊢ (𝑁 ∈ ℕ → (#b‘𝑁) = ((⌊‘(2 logb 𝑁)) + 1)) | |
53 | 28, 52 | syl 17 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘2) → (#b‘𝑁) = ((⌊‘(2 logb 𝑁)) + 1)) |
54 | 53 | adantr 481 | . 2 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b‘𝑁) = ((⌊‘(2 logb 𝑁)) + 1)) |
55 | 47, 51, 54 | 3eqtr4rd 2783 | 1 ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b‘𝑁) = ((#b‘((𝑁 − 1) / 2)) + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∖ cdif 3945 {csn 4628 class class class wbr 5148 ‘cfv 6543 (class class class)co 7411 ℂcc 11110 ℝcr 11111 0cc0 11112 1c1 11113 + caddc 11115 < clt 11250 − cmin 11446 / cdiv 11873 ℕcn 12214 2c2 12269 ℕ0cn0 12474 ℤcz 12560 ℤ≥cuz 12824 ℝ+crp 12976 ⌊cfl 13757 logb clogb 26276 #bcblen 47339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-div 11874 df-nn 12215 df-2 12277 df-3 12278 df-4 12279 df-5 12280 df-6 12281 df-7 12282 df-8 12283 df-9 12284 df-n0 12475 df-z 12561 df-dec 12680 df-uz 12825 df-q 12935 df-rp 12977 df-xneg 13094 df-xadd 13095 df-xmul 13096 df-ioo 13330 df-ioc 13331 df-ico 13332 df-icc 13333 df-fz 13487 df-fzo 13630 df-fl 13759 df-mod 13837 df-seq 13969 df-exp 14030 df-fac 14236 df-bc 14265 df-hash 14293 df-shft 15016 df-cj 15048 df-re 15049 df-im 15050 df-sqrt 15184 df-abs 15185 df-limsup 15417 df-clim 15434 df-rlim 15435 df-sum 15635 df-ef 16013 df-sin 16015 df-cos 16016 df-pi 16018 df-struct 17082 df-sets 17099 df-slot 17117 df-ndx 17129 df-base 17147 df-ress 17176 df-plusg 17212 df-mulr 17213 df-starv 17214 df-sca 17215 df-vsca 17216 df-ip 17217 df-tset 17218 df-ple 17219 df-ds 17221 df-unif 17222 df-hom 17223 df-cco 17224 df-rest 17370 df-topn 17371 df-0g 17389 df-gsum 17390 df-topgen 17391 df-pt 17392 df-prds 17395 df-xrs 17450 df-qtop 17455 df-imas 17456 df-xps 17458 df-mre 17532 df-mrc 17533 df-acs 17535 df-mgm 18563 df-sgrp 18612 df-mnd 18628 df-submnd 18674 df-mulg 18953 df-cntz 19183 df-cmn 19652 df-psmet 20942 df-xmet 20943 df-met 20944 df-bl 20945 df-mopn 20946 df-fbas 20947 df-fg 20948 df-cnfld 20951 df-top 22403 df-topon 22420 df-topsp 22442 df-bases 22456 df-cld 22530 df-ntr 22531 df-cls 22532 df-nei 22609 df-lp 22647 df-perf 22648 df-cn 22738 df-cnp 22739 df-haus 22826 df-tx 23073 df-hmeo 23266 df-fil 23357 df-fm 23449 df-flim 23450 df-flf 23451 df-xms 23833 df-ms 23834 df-tms 23835 df-cncf 24401 df-limc 25390 df-dv 25391 df-log 26072 df-cxp 26073 df-logb 26277 df-blen 47340 |
This theorem is referenced by: blengt1fldiv2p1 47363 nn0sumshdiglemB 47390 |
Copyright terms: Public domain | W3C validator |