Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blennngt2o2 Structured version   Visualization version   GIF version

Theorem blennngt2o2 45899
Description: The binary length of an odd integer greater than 1 is the binary length of the half of the integer decreased by 1, increased by 1. (Contributed by AV, 3-Jun-2020.)
Assertion
Ref Expression
blennngt2o2 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b𝑁) = ((#b‘((𝑁 − 1) / 2)) + 1))

Proof of Theorem blennngt2o2
StepHypRef Expression
1 2rp 12726 . . . . . . . 8 2 ∈ ℝ+
2 1ne2 12173 . . . . . . . . 9 1 ≠ 2
32necomi 3000 . . . . . . . 8 2 ≠ 1
4 eldifsn 4726 . . . . . . . 8 (2 ∈ (ℝ+ ∖ {1}) ↔ (2 ∈ ℝ+ ∧ 2 ≠ 1))
51, 3, 4mpbir2an 708 . . . . . . 7 2 ∈ (ℝ+ ∖ {1})
6 uz2m1nn 12654 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
76nnrpd 12761 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℝ+)
87adantr 481 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 − 1) ∈ ℝ+)
9 relogbdivb 45869 . . . . . . 7 ((2 ∈ (ℝ+ ∖ {1}) ∧ (𝑁 − 1) ∈ ℝ+) → (2 logb ((𝑁 − 1) / 2)) = ((2 logb (𝑁 − 1)) − 1))
105, 8, 9sylancr 587 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (2 logb ((𝑁 − 1) / 2)) = ((2 logb (𝑁 − 1)) − 1))
1110fveq2d 6773 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(2 logb ((𝑁 − 1) / 2))) = (⌊‘((2 logb (𝑁 − 1)) − 1)))
1211oveq1d 7284 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) = ((⌊‘((2 logb (𝑁 − 1)) − 1)) + 1))
131a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ+)
143a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ≠ 1)
15 relogbcl 25913 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ (𝑁 − 1) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (𝑁 − 1)) ∈ ℝ)
1613, 7, 14, 15syl3anc 1370 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (2 logb (𝑁 − 1)) ∈ ℝ)
17 1z 12342 . . . . . . . 8 1 ∈ ℤ
1816, 17jctir 521 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → ((2 logb (𝑁 − 1)) ∈ ℝ ∧ 1 ∈ ℤ))
1918adantr 481 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((2 logb (𝑁 − 1)) ∈ ℝ ∧ 1 ∈ ℤ))
20 flsubz 45824 . . . . . 6 (((2 logb (𝑁 − 1)) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((2 logb (𝑁 − 1)) − 1)) = ((⌊‘(2 logb (𝑁 − 1))) − 1))
2119, 20syl 17 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘((2 logb (𝑁 − 1)) − 1)) = ((⌊‘(2 logb (𝑁 − 1))) − 1))
2221oveq1d 7284 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘((2 logb (𝑁 − 1)) − 1)) + 1) = (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1))
2316flcld 13508 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (⌊‘(2 logb (𝑁 − 1))) ∈ ℤ)
2423zcnd 12418 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (⌊‘(2 logb (𝑁 − 1))) ∈ ℂ)
25 npcan1 11392 . . . . . . 7 ((⌊‘(2 logb (𝑁 − 1))) ∈ ℂ → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb (𝑁 − 1))))
2624, 25syl 17 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb (𝑁 − 1))))
2726adantr 481 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb (𝑁 − 1))))
28 eluz2nn 12615 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
2928peano2nnd 11982 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℕ)
3029nnred 11980 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → (𝑁 + 1) ∈ ℝ)
31 2re 12039 . . . . . . . . . 10 2 ∈ ℝ
3231a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ)
33 eluzge2nn0 12618 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ0)
34 nn0p1gt0 12254 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → 0 < (𝑁 + 1))
3533, 34syl 17 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 0 < (𝑁 + 1))
36 2pos 12068 . . . . . . . . . 10 0 < 2
3736a1i 11 . . . . . . . . 9 (𝑁 ∈ (ℤ‘2) → 0 < 2)
3830, 32, 35, 37divgt0d 11902 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 0 < ((𝑁 + 1) / 2))
39 nn0z 12335 . . . . . . . 8 (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ)
4038, 39anim12ci 614 . . . . . . 7 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2)))
41 elnnz 12321 . . . . . . 7 (((𝑁 + 1) / 2) ∈ ℕ ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2)))
4240, 41sylibr 233 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 + 1) / 2) ∈ ℕ)
43 nnolog2flm1 45897 . . . . . 6 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))
4442, 43syldan 591 . . . . 5 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (⌊‘(2 logb 𝑁)) = (⌊‘(2 logb (𝑁 − 1))))
4527, 44eqtr4d 2783 . . . 4 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((⌊‘(2 logb (𝑁 − 1))) − 1) + 1) = (⌊‘(2 logb 𝑁)))
4612, 22, 453eqtrd 2784 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) = (⌊‘(2 logb 𝑁)))
4746oveq1d 7284 . 2 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) + 1) = ((⌊‘(2 logb 𝑁)) + 1))
48 nno 16081 . . 3 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)
49 blennn 45882 . . . 4 (((𝑁 − 1) / 2) ∈ ℕ → (#b‘((𝑁 − 1) / 2)) = ((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1))
5049oveq1d 7284 . . 3 (((𝑁 − 1) / 2) ∈ ℕ → ((#b‘((𝑁 − 1) / 2)) + 1) = (((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) + 1))
5148, 50syl 17 . 2 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((#b‘((𝑁 − 1) / 2)) + 1) = (((⌊‘(2 logb ((𝑁 − 1) / 2))) + 1) + 1))
52 blennn 45882 . . . 4 (𝑁 ∈ ℕ → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
5328, 52syl 17 . . 3 (𝑁 ∈ (ℤ‘2) → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
5453adantr 481 . 2 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
5547, 51, 543eqtr4rd 2791 1 ((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (#b𝑁) = ((#b‘((𝑁 − 1) / 2)) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wne 2945  cdif 3889  {csn 4567   class class class wbr 5079  cfv 6431  (class class class)co 7269  cc 10862  cr 10863  0cc0 10864  1c1 10865   + caddc 10867   < clt 11002  cmin 11197   / cdiv 11624  cn 11965  2c2 12020  0cn0 12225  cz 12311  cuz 12573  +crp 12721  cfl 13500   logb clogb 25904  #bcblen 45876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-inf2 9369  ax-cnex 10920  ax-resscn 10921  ax-1cn 10922  ax-icn 10923  ax-addcl 10924  ax-addrcl 10925  ax-mulcl 10926  ax-mulrcl 10927  ax-mulcom 10928  ax-addass 10929  ax-mulass 10930  ax-distr 10931  ax-i2m1 10932  ax-1ne0 10933  ax-1rid 10934  ax-rnegex 10935  ax-rrecex 10936  ax-cnre 10937  ax-pre-lttri 10938  ax-pre-lttrn 10939  ax-pre-ltadd 10940  ax-pre-mulgt0 10941  ax-pre-sup 10942  ax-addf 10943  ax-mulf 10944
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-isom 6440  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-of 7525  df-om 7702  df-1st 7818  df-2nd 7819  df-supp 7963  df-frecs 8082  df-wrecs 8113  df-recs 8187  df-rdg 8226  df-1o 8282  df-2o 8283  df-er 8473  df-map 8592  df-pm 8593  df-ixp 8661  df-en 8709  df-dom 8710  df-sdom 8711  df-fin 8712  df-fsupp 9099  df-fi 9140  df-sup 9171  df-inf 9172  df-oi 9239  df-card 9690  df-pnf 11004  df-mnf 11005  df-xr 11006  df-ltxr 11007  df-le 11008  df-sub 11199  df-neg 11200  df-div 11625  df-nn 11966  df-2 12028  df-3 12029  df-4 12030  df-5 12031  df-6 12032  df-7 12033  df-8 12034  df-9 12035  df-n0 12226  df-z 12312  df-dec 12429  df-uz 12574  df-q 12680  df-rp 12722  df-xneg 12839  df-xadd 12840  df-xmul 12841  df-ioo 13074  df-ioc 13075  df-ico 13076  df-icc 13077  df-fz 13231  df-fzo 13374  df-fl 13502  df-mod 13580  df-seq 13712  df-exp 13773  df-fac 13978  df-bc 14007  df-hash 14035  df-shft 14768  df-cj 14800  df-re 14801  df-im 14802  df-sqrt 14936  df-abs 14937  df-limsup 15170  df-clim 15187  df-rlim 15188  df-sum 15388  df-ef 15767  df-sin 15769  df-cos 15770  df-pi 15772  df-struct 16838  df-sets 16855  df-slot 16873  df-ndx 16885  df-base 16903  df-ress 16932  df-plusg 16965  df-mulr 16966  df-starv 16967  df-sca 16968  df-vsca 16969  df-ip 16970  df-tset 16971  df-ple 16972  df-ds 16974  df-unif 16975  df-hom 16976  df-cco 16977  df-rest 17123  df-topn 17124  df-0g 17142  df-gsum 17143  df-topgen 17144  df-pt 17145  df-prds 17148  df-xrs 17203  df-qtop 17208  df-imas 17209  df-xps 17211  df-mre 17285  df-mrc 17286  df-acs 17288  df-mgm 18316  df-sgrp 18365  df-mnd 18376  df-submnd 18421  df-mulg 18691  df-cntz 18913  df-cmn 19378  df-psmet 20579  df-xmet 20580  df-met 20581  df-bl 20582  df-mopn 20583  df-fbas 20584  df-fg 20585  df-cnfld 20588  df-top 22033  df-topon 22050  df-topsp 22072  df-bases 22086  df-cld 22160  df-ntr 22161  df-cls 22162  df-nei 22239  df-lp 22277  df-perf 22278  df-cn 22368  df-cnp 22369  df-haus 22456  df-tx 22703  df-hmeo 22896  df-fil 22987  df-fm 23079  df-flim 23080  df-flf 23081  df-xms 23463  df-ms 23464  df-tms 23465  df-cncf 24031  df-limc 25020  df-dv 25021  df-log 25702  df-cxp 25703  df-logb 25905  df-blen 45877
This theorem is referenced by:  blengt1fldiv2p1  45900  nn0sumshdiglemB  45927
  Copyright terms: Public domain W3C validator