Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  logbpw2m1 Structured version   Visualization version   GIF version

Theorem logbpw2m1 46264
Description: The floor of the binary logarithm of 2 to the power of a positive integer minus 1 is equal to the integer minus 1. (Contributed by AV, 31-May-2020.)
Assertion
Ref Expression
logbpw2m1 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1))

Proof of Theorem logbpw2m1
StepHypRef Expression
1 2rp 12836 . . . . 5 2 ∈ ℝ+
21a1i 11 . . . 4 (𝐼 ∈ ℕ → 2 ∈ ℝ+)
3 2nn0 12351 . . . . . . . 8 2 ∈ ℕ0
43a1i 11 . . . . . . 7 (𝐼 ∈ ℕ → 2 ∈ ℕ0)
5 nnnn0 12341 . . . . . . 7 (𝐼 ∈ ℕ → 𝐼 ∈ ℕ0)
64, 5nn0expcld 14062 . . . . . 6 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℕ0)
7 nnge1 12102 . . . . . . 7 (𝐼 ∈ ℕ → 1 ≤ 𝐼)
8 2re 12148 . . . . . . . . . 10 2 ∈ ℝ
98a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ → 2 ∈ ℝ)
10 1zzd 12452 . . . . . . . . 9 (𝐼 ∈ ℕ → 1 ∈ ℤ)
11 nnz 12443 . . . . . . . . 9 (𝐼 ∈ ℕ → 𝐼 ∈ ℤ)
12 1lt2 12245 . . . . . . . . . 10 1 < 2
1312a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ → 1 < 2)
149, 10, 11, 13leexp2d 14070 . . . . . . . 8 (𝐼 ∈ ℕ → (1 ≤ 𝐼 ↔ (2↑1) ≤ (2↑𝐼)))
15 2cn 12149 . . . . . . . . . . 11 2 ∈ ℂ
16 exp1 13889 . . . . . . . . . . 11 (2 ∈ ℂ → (2↑1) = 2)
1715, 16ax-mp 5 . . . . . . . . . 10 (2↑1) = 2
1817a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ → (2↑1) = 2)
1918breq1d 5102 . . . . . . . 8 (𝐼 ∈ ℕ → ((2↑1) ≤ (2↑𝐼) ↔ 2 ≤ (2↑𝐼)))
2014, 19bitrd 278 . . . . . . 7 (𝐼 ∈ ℕ → (1 ≤ 𝐼 ↔ 2 ≤ (2↑𝐼)))
217, 20mpbid 231 . . . . . 6 (𝐼 ∈ ℕ → 2 ≤ (2↑𝐼))
22 nn0ge2m1nn 12403 . . . . . 6 (((2↑𝐼) ∈ ℕ0 ∧ 2 ≤ (2↑𝐼)) → ((2↑𝐼) − 1) ∈ ℕ)
236, 21, 22syl2anc 584 . . . . 5 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) ∈ ℕ)
2423nnrpd 12871 . . . 4 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) ∈ ℝ+)
25 1ne2 12282 . . . . . 6 1 ≠ 2
2625necomi 2995 . . . . 5 2 ≠ 1
2726a1i 11 . . . 4 (𝐼 ∈ ℕ → 2 ≠ 1)
28 relogbcl 26029 . . . 4 ((2 ∈ ℝ+ ∧ ((2↑𝐼) − 1) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb ((2↑𝐼) − 1)) ∈ ℝ)
292, 24, 27, 28syl3anc 1370 . . 3 (𝐼 ∈ ℕ → (2 logb ((2↑𝐼) − 1)) ∈ ℝ)
3029flcld 13619 . 2 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ)
31 peano2zm 12464 . . 3 (𝐼 ∈ ℤ → (𝐼 − 1) ∈ ℤ)
3211, 31syl 17 . 2 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℤ)
33 2z 12453 . . . . . . 7 2 ∈ ℤ
34 uzid 12698 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
3533, 34ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
36 nnlogbexp 26037 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ (𝐼 − 1) ∈ ℤ) → (2 logb (2↑(𝐼 − 1))) = (𝐼 − 1))
3735, 32, 36sylancr 587 . . . . 5 (𝐼 ∈ ℕ → (2 logb (2↑(𝐼 − 1))) = (𝐼 − 1))
3837fveq2d 6829 . . . 4 (𝐼 ∈ ℕ → (⌊‘(2 logb (2↑(𝐼 − 1)))) = (⌊‘(𝐼 − 1)))
39 flid 13629 . . . . 5 ((𝐼 − 1) ∈ ℤ → (⌊‘(𝐼 − 1)) = (𝐼 − 1))
4032, 39syl 17 . . . 4 (𝐼 ∈ ℕ → (⌊‘(𝐼 − 1)) = (𝐼 − 1))
4138, 40eqtrd 2776 . . 3 (𝐼 ∈ ℕ → (⌊‘(2 logb (2↑(𝐼 − 1)))) = (𝐼 − 1))
42 2nn 12147 . . . . . . . 8 2 ∈ ℕ
4342a1i 11 . . . . . . 7 (𝐼 ∈ ℕ → 2 ∈ ℕ)
44 nnm1nn0 12375 . . . . . . 7 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℕ0)
4543, 44nnexpcld 14061 . . . . . 6 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℕ)
4645nnrpd 12871 . . . . 5 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℝ+)
47 relogbcl 26029 . . . . 5 ((2 ∈ ℝ+ ∧ (2↑(𝐼 − 1)) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (2↑(𝐼 − 1))) ∈ ℝ)
482, 46, 27, 47syl3anc 1370 . . . 4 (𝐼 ∈ ℕ → (2 logb (2↑(𝐼 − 1))) ∈ ℝ)
49 pw2m1lepw2m1 46212 . . . . 5 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1))
5035a1i 11 . . . . . 6 (𝐼 ∈ ℕ → 2 ∈ (ℤ‘2))
51 logbleb 26039 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ (2↑(𝐼 − 1)) ∈ ℝ+ ∧ ((2↑𝐼) − 1) ∈ ℝ+) → ((2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1) ↔ (2 logb (2↑(𝐼 − 1))) ≤ (2 logb ((2↑𝐼) − 1))))
5250, 46, 24, 51syl3anc 1370 . . . . 5 (𝐼 ∈ ℕ → ((2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1) ↔ (2 logb (2↑(𝐼 − 1))) ≤ (2 logb ((2↑𝐼) − 1))))
5349, 52mpbid 231 . . . 4 (𝐼 ∈ ℕ → (2 logb (2↑(𝐼 − 1))) ≤ (2 logb ((2↑𝐼) − 1)))
54 flwordi 13633 . . . 4 (((2 logb (2↑(𝐼 − 1))) ∈ ℝ ∧ (2 logb ((2↑𝐼) − 1)) ∈ ℝ ∧ (2 logb (2↑(𝐼 − 1))) ≤ (2 logb ((2↑𝐼) − 1))) → (⌊‘(2 logb (2↑(𝐼 − 1)))) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))))
5548, 29, 53, 54syl3anc 1370 . . 3 (𝐼 ∈ ℕ → (⌊‘(2 logb (2↑(𝐼 − 1)))) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))))
5641, 55eqbrtrrd 5116 . 2 (𝐼 ∈ ℕ → (𝐼 − 1) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))))
5743, 5nnexpcld 14061 . . . . . . . . 9 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℕ)
5857nnnn0d 12394 . . . . . . . 8 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℕ0)
5958, 21, 22syl2anc 584 . . . . . . 7 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) ∈ ℕ)
6059nnrpd 12871 . . . . . 6 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) ∈ ℝ+)
612, 60, 27, 28syl3anc 1370 . . . . 5 (𝐼 ∈ ℕ → (2 logb ((2↑𝐼) − 1)) ∈ ℝ)
6261flcld 13619 . . . 4 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ)
6362zred 12527 . . 3 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℝ)
64 nnre 12081 . . . . 5 (𝐼 ∈ ℕ → 𝐼 ∈ ℝ)
65 peano2rem 11389 . . . . 5 (𝐼 ∈ ℝ → (𝐼 − 1) ∈ ℝ)
6664, 65syl 17 . . . 4 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℝ)
67 peano2re 11249 . . . 4 ((𝐼 − 1) ∈ ℝ → ((𝐼 − 1) + 1) ∈ ℝ)
6866, 67syl 17 . . 3 (𝐼 ∈ ℕ → ((𝐼 − 1) + 1) ∈ ℝ)
69 flle 13620 . . . 4 ((2 logb ((2↑𝐼) − 1)) ∈ ℝ → (⌊‘(2 logb ((2↑𝐼) − 1))) ≤ (2 logb ((2↑𝐼) − 1)))
7029, 69syl 17 . . 3 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) ≤ (2 logb ((2↑𝐼) − 1)))
7157nnrpd 12871 . . . . 5 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℝ+)
72 relogbcl 26029 . . . . 5 ((2 ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (2↑𝐼)) ∈ ℝ)
732, 71, 27, 72syl3anc 1370 . . . 4 (𝐼 ∈ ℕ → (2 logb (2↑𝐼)) ∈ ℝ)
7457nnred 12089 . . . . . 6 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℝ)
7574ltm1d 12008 . . . . 5 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) < (2↑𝐼))
76 logblt 26040 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ ((2↑𝐼) − 1) ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ+) → (((2↑𝐼) − 1) < (2↑𝐼) ↔ (2 logb ((2↑𝐼) − 1)) < (2 logb (2↑𝐼))))
7750, 24, 71, 76syl3anc 1370 . . . . 5 (𝐼 ∈ ℕ → (((2↑𝐼) − 1) < (2↑𝐼) ↔ (2 logb ((2↑𝐼) − 1)) < (2 logb (2↑𝐼))))
7875, 77mpbid 231 . . . 4 (𝐼 ∈ ℕ → (2 logb ((2↑𝐼) − 1)) < (2 logb (2↑𝐼)))
7964leidd 11642 . . . . 5 (𝐼 ∈ ℕ → 𝐼𝐼)
80 nnlogbexp 26037 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℤ) → (2 logb (2↑𝐼)) = 𝐼)
8135, 11, 80sylancr 587 . . . . 5 (𝐼 ∈ ℕ → (2 logb (2↑𝐼)) = 𝐼)
82 nncn 12082 . . . . . 6 (𝐼 ∈ ℕ → 𝐼 ∈ ℂ)
83 npcan1 11501 . . . . . 6 (𝐼 ∈ ℂ → ((𝐼 − 1) + 1) = 𝐼)
8482, 83syl 17 . . . . 5 (𝐼 ∈ ℕ → ((𝐼 − 1) + 1) = 𝐼)
8579, 81, 843brtr4d 5124 . . . 4 (𝐼 ∈ ℕ → (2 logb (2↑𝐼)) ≤ ((𝐼 − 1) + 1))
8629, 73, 68, 78, 85ltletrd 11236 . . 3 (𝐼 ∈ ℕ → (2 logb ((2↑𝐼) − 1)) < ((𝐼 − 1) + 1))
8763, 29, 68, 70, 86lelttrd 11234 . 2 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) < ((𝐼 − 1) + 1))
88 zgeltp1eq 45152 . . 3 (((⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ ∧ (𝐼 − 1) ∈ ℤ) → (((𝐼 − 1) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))) ∧ (⌊‘(2 logb ((2↑𝐼) − 1))) < ((𝐼 − 1) + 1)) → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1)))
8988imp 407 . 2 ((((⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ ∧ (𝐼 − 1) ∈ ℤ) ∧ ((𝐼 − 1) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))) ∧ (⌊‘(2 logb ((2↑𝐼) − 1))) < ((𝐼 − 1) + 1))) → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1))
9030, 32, 56, 87, 89syl22anc 836 1 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wne 2940   class class class wbr 5092  cfv 6479  (class class class)co 7337  cc 10970  cr 10971  1c1 10973   + caddc 10975   < clt 11110  cle 11111  cmin 11306  cn 12074  2c2 12129  0cn0 12334  cz 12420  cuz 12683  +crp 12831  cfl 13611  cexp 13883   logb clogb 26020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050  ax-addf 11051  ax-mulf 11052
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-om 7781  df-1st 7899  df-2nd 7900  df-supp 8048  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-2o 8368  df-er 8569  df-map 8688  df-pm 8689  df-ixp 8757  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-fsupp 9227  df-fi 9268  df-sup 9299  df-inf 9300  df-oi 9367  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-9 12144  df-n0 12335  df-z 12421  df-dec 12539  df-uz 12684  df-q 12790  df-rp 12832  df-xneg 12949  df-xadd 12950  df-xmul 12951  df-ioo 13184  df-ioc 13185  df-ico 13186  df-icc 13187  df-fz 13341  df-fzo 13484  df-fl 13613  df-mod 13691  df-seq 13823  df-exp 13884  df-fac 14089  df-bc 14118  df-hash 14146  df-shft 14877  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-limsup 15279  df-clim 15296  df-rlim 15297  df-sum 15497  df-ef 15876  df-sin 15878  df-cos 15879  df-pi 15881  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-starv 17074  df-sca 17075  df-vsca 17076  df-ip 17077  df-tset 17078  df-ple 17079  df-ds 17081  df-unif 17082  df-hom 17083  df-cco 17084  df-rest 17230  df-topn 17231  df-0g 17249  df-gsum 17250  df-topgen 17251  df-pt 17252  df-prds 17255  df-xrs 17310  df-qtop 17315  df-imas 17316  df-xps 17318  df-mre 17392  df-mrc 17393  df-acs 17395  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-submnd 18528  df-mulg 18797  df-cntz 19019  df-cmn 19483  df-psmet 20695  df-xmet 20696  df-met 20697  df-bl 20698  df-mopn 20699  df-fbas 20700  df-fg 20701  df-cnfld 20704  df-top 22149  df-topon 22166  df-topsp 22188  df-bases 22202  df-cld 22276  df-ntr 22277  df-cls 22278  df-nei 22355  df-lp 22393  df-perf 22394  df-cn 22484  df-cnp 22485  df-haus 22572  df-tx 22819  df-hmeo 23012  df-fil 23103  df-fm 23195  df-flim 23196  df-flf 23197  df-xms 23579  df-ms 23580  df-tms 23581  df-cncf 24147  df-limc 25136  df-dv 25137  df-log 25818  df-cxp 25819  df-logb 26021
This theorem is referenced by:  fllog2  46265  blenpw2m1  46276
  Copyright terms: Public domain W3C validator