Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  logbpw2m1 Structured version   Visualization version   GIF version

Theorem logbpw2m1 45801
Description: The floor of the binary logarithm of 2 to the power of a positive integer minus 1 is equal to the integer minus 1. (Contributed by AV, 31-May-2020.)
Assertion
Ref Expression
logbpw2m1 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1))

Proof of Theorem logbpw2m1
StepHypRef Expression
1 2rp 12664 . . . . 5 2 ∈ ℝ+
21a1i 11 . . . 4 (𝐼 ∈ ℕ → 2 ∈ ℝ+)
3 2nn0 12180 . . . . . . . 8 2 ∈ ℕ0
43a1i 11 . . . . . . 7 (𝐼 ∈ ℕ → 2 ∈ ℕ0)
5 nnnn0 12170 . . . . . . 7 (𝐼 ∈ ℕ → 𝐼 ∈ ℕ0)
64, 5nn0expcld 13889 . . . . . 6 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℕ0)
7 nnge1 11931 . . . . . . 7 (𝐼 ∈ ℕ → 1 ≤ 𝐼)
8 2re 11977 . . . . . . . . . 10 2 ∈ ℝ
98a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ → 2 ∈ ℝ)
10 1zzd 12281 . . . . . . . . 9 (𝐼 ∈ ℕ → 1 ∈ ℤ)
11 nnz 12272 . . . . . . . . 9 (𝐼 ∈ ℕ → 𝐼 ∈ ℤ)
12 1lt2 12074 . . . . . . . . . 10 1 < 2
1312a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ → 1 < 2)
149, 10, 11, 13leexp2d 13897 . . . . . . . 8 (𝐼 ∈ ℕ → (1 ≤ 𝐼 ↔ (2↑1) ≤ (2↑𝐼)))
15 2cn 11978 . . . . . . . . . . 11 2 ∈ ℂ
16 exp1 13716 . . . . . . . . . . 11 (2 ∈ ℂ → (2↑1) = 2)
1715, 16ax-mp 5 . . . . . . . . . 10 (2↑1) = 2
1817a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ → (2↑1) = 2)
1918breq1d 5080 . . . . . . . 8 (𝐼 ∈ ℕ → ((2↑1) ≤ (2↑𝐼) ↔ 2 ≤ (2↑𝐼)))
2014, 19bitrd 278 . . . . . . 7 (𝐼 ∈ ℕ → (1 ≤ 𝐼 ↔ 2 ≤ (2↑𝐼)))
217, 20mpbid 231 . . . . . 6 (𝐼 ∈ ℕ → 2 ≤ (2↑𝐼))
22 nn0ge2m1nn 12232 . . . . . 6 (((2↑𝐼) ∈ ℕ0 ∧ 2 ≤ (2↑𝐼)) → ((2↑𝐼) − 1) ∈ ℕ)
236, 21, 22syl2anc 583 . . . . 5 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) ∈ ℕ)
2423nnrpd 12699 . . . 4 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) ∈ ℝ+)
25 1ne2 12111 . . . . . 6 1 ≠ 2
2625necomi 2997 . . . . 5 2 ≠ 1
2726a1i 11 . . . 4 (𝐼 ∈ ℕ → 2 ≠ 1)
28 relogbcl 25828 . . . 4 ((2 ∈ ℝ+ ∧ ((2↑𝐼) − 1) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb ((2↑𝐼) − 1)) ∈ ℝ)
292, 24, 27, 28syl3anc 1369 . . 3 (𝐼 ∈ ℕ → (2 logb ((2↑𝐼) − 1)) ∈ ℝ)
3029flcld 13446 . 2 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ)
31 peano2zm 12293 . . 3 (𝐼 ∈ ℤ → (𝐼 − 1) ∈ ℤ)
3211, 31syl 17 . 2 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℤ)
33 2z 12282 . . . . . . 7 2 ∈ ℤ
34 uzid 12526 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
3533, 34ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
36 nnlogbexp 25836 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ (𝐼 − 1) ∈ ℤ) → (2 logb (2↑(𝐼 − 1))) = (𝐼 − 1))
3735, 32, 36sylancr 586 . . . . 5 (𝐼 ∈ ℕ → (2 logb (2↑(𝐼 − 1))) = (𝐼 − 1))
3837fveq2d 6760 . . . 4 (𝐼 ∈ ℕ → (⌊‘(2 logb (2↑(𝐼 − 1)))) = (⌊‘(𝐼 − 1)))
39 flid 13456 . . . . 5 ((𝐼 − 1) ∈ ℤ → (⌊‘(𝐼 − 1)) = (𝐼 − 1))
4032, 39syl 17 . . . 4 (𝐼 ∈ ℕ → (⌊‘(𝐼 − 1)) = (𝐼 − 1))
4138, 40eqtrd 2778 . . 3 (𝐼 ∈ ℕ → (⌊‘(2 logb (2↑(𝐼 − 1)))) = (𝐼 − 1))
42 2nn 11976 . . . . . . . 8 2 ∈ ℕ
4342a1i 11 . . . . . . 7 (𝐼 ∈ ℕ → 2 ∈ ℕ)
44 nnm1nn0 12204 . . . . . . 7 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℕ0)
4543, 44nnexpcld 13888 . . . . . 6 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℕ)
4645nnrpd 12699 . . . . 5 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℝ+)
47 relogbcl 25828 . . . . 5 ((2 ∈ ℝ+ ∧ (2↑(𝐼 − 1)) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (2↑(𝐼 − 1))) ∈ ℝ)
482, 46, 27, 47syl3anc 1369 . . . 4 (𝐼 ∈ ℕ → (2 logb (2↑(𝐼 − 1))) ∈ ℝ)
49 pw2m1lepw2m1 45749 . . . . 5 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1))
5035a1i 11 . . . . . 6 (𝐼 ∈ ℕ → 2 ∈ (ℤ‘2))
51 logbleb 25838 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ (2↑(𝐼 − 1)) ∈ ℝ+ ∧ ((2↑𝐼) − 1) ∈ ℝ+) → ((2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1) ↔ (2 logb (2↑(𝐼 − 1))) ≤ (2 logb ((2↑𝐼) − 1))))
5250, 46, 24, 51syl3anc 1369 . . . . 5 (𝐼 ∈ ℕ → ((2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1) ↔ (2 logb (2↑(𝐼 − 1))) ≤ (2 logb ((2↑𝐼) − 1))))
5349, 52mpbid 231 . . . 4 (𝐼 ∈ ℕ → (2 logb (2↑(𝐼 − 1))) ≤ (2 logb ((2↑𝐼) − 1)))
54 flwordi 13460 . . . 4 (((2 logb (2↑(𝐼 − 1))) ∈ ℝ ∧ (2 logb ((2↑𝐼) − 1)) ∈ ℝ ∧ (2 logb (2↑(𝐼 − 1))) ≤ (2 logb ((2↑𝐼) − 1))) → (⌊‘(2 logb (2↑(𝐼 − 1)))) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))))
5548, 29, 53, 54syl3anc 1369 . . 3 (𝐼 ∈ ℕ → (⌊‘(2 logb (2↑(𝐼 − 1)))) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))))
5641, 55eqbrtrrd 5094 . 2 (𝐼 ∈ ℕ → (𝐼 − 1) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))))
5743, 5nnexpcld 13888 . . . . . . . . 9 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℕ)
5857nnnn0d 12223 . . . . . . . 8 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℕ0)
5958, 21, 22syl2anc 583 . . . . . . 7 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) ∈ ℕ)
6059nnrpd 12699 . . . . . 6 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) ∈ ℝ+)
612, 60, 27, 28syl3anc 1369 . . . . 5 (𝐼 ∈ ℕ → (2 logb ((2↑𝐼) − 1)) ∈ ℝ)
6261flcld 13446 . . . 4 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ)
6362zred 12355 . . 3 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℝ)
64 nnre 11910 . . . . 5 (𝐼 ∈ ℕ → 𝐼 ∈ ℝ)
65 peano2rem 11218 . . . . 5 (𝐼 ∈ ℝ → (𝐼 − 1) ∈ ℝ)
6664, 65syl 17 . . . 4 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℝ)
67 peano2re 11078 . . . 4 ((𝐼 − 1) ∈ ℝ → ((𝐼 − 1) + 1) ∈ ℝ)
6866, 67syl 17 . . 3 (𝐼 ∈ ℕ → ((𝐼 − 1) + 1) ∈ ℝ)
69 flle 13447 . . . 4 ((2 logb ((2↑𝐼) − 1)) ∈ ℝ → (⌊‘(2 logb ((2↑𝐼) − 1))) ≤ (2 logb ((2↑𝐼) − 1)))
7029, 69syl 17 . . 3 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) ≤ (2 logb ((2↑𝐼) − 1)))
7157nnrpd 12699 . . . . 5 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℝ+)
72 relogbcl 25828 . . . . 5 ((2 ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (2↑𝐼)) ∈ ℝ)
732, 71, 27, 72syl3anc 1369 . . . 4 (𝐼 ∈ ℕ → (2 logb (2↑𝐼)) ∈ ℝ)
7457nnred 11918 . . . . . 6 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℝ)
7574ltm1d 11837 . . . . 5 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) < (2↑𝐼))
76 logblt 25839 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ ((2↑𝐼) − 1) ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ+) → (((2↑𝐼) − 1) < (2↑𝐼) ↔ (2 logb ((2↑𝐼) − 1)) < (2 logb (2↑𝐼))))
7750, 24, 71, 76syl3anc 1369 . . . . 5 (𝐼 ∈ ℕ → (((2↑𝐼) − 1) < (2↑𝐼) ↔ (2 logb ((2↑𝐼) − 1)) < (2 logb (2↑𝐼))))
7875, 77mpbid 231 . . . 4 (𝐼 ∈ ℕ → (2 logb ((2↑𝐼) − 1)) < (2 logb (2↑𝐼)))
7964leidd 11471 . . . . 5 (𝐼 ∈ ℕ → 𝐼𝐼)
80 nnlogbexp 25836 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℤ) → (2 logb (2↑𝐼)) = 𝐼)
8135, 11, 80sylancr 586 . . . . 5 (𝐼 ∈ ℕ → (2 logb (2↑𝐼)) = 𝐼)
82 nncn 11911 . . . . . 6 (𝐼 ∈ ℕ → 𝐼 ∈ ℂ)
83 npcan1 11330 . . . . . 6 (𝐼 ∈ ℂ → ((𝐼 − 1) + 1) = 𝐼)
8482, 83syl 17 . . . . 5 (𝐼 ∈ ℕ → ((𝐼 − 1) + 1) = 𝐼)
8579, 81, 843brtr4d 5102 . . . 4 (𝐼 ∈ ℕ → (2 logb (2↑𝐼)) ≤ ((𝐼 − 1) + 1))
8629, 73, 68, 78, 85ltletrd 11065 . . 3 (𝐼 ∈ ℕ → (2 logb ((2↑𝐼) − 1)) < ((𝐼 − 1) + 1))
8763, 29, 68, 70, 86lelttrd 11063 . 2 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) < ((𝐼 − 1) + 1))
88 zgeltp1eq 44689 . . 3 (((⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ ∧ (𝐼 − 1) ∈ ℤ) → (((𝐼 − 1) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))) ∧ (⌊‘(2 logb ((2↑𝐼) − 1))) < ((𝐼 − 1) + 1)) → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1)))
8988imp 406 . 2 ((((⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ ∧ (𝐼 − 1) ∈ ℤ) ∧ ((𝐼 − 1) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))) ∧ (⌊‘(2 logb ((2↑𝐼) − 1))) < ((𝐼 − 1) + 1))) → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1))
9030, 32, 56, 87, 89syl22anc 835 1 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  +crp 12659  cfl 13438  cexp 13710   logb clogb 25819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-cxp 25618  df-logb 25820
This theorem is referenced by:  fllog2  45802  blenpw2m1  45813
  Copyright terms: Public domain W3C validator