Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  logbpw2m1 Structured version   Visualization version   GIF version

Theorem logbpw2m1 48556
Description: The floor of the binary logarithm of 2 to the power of a positive integer minus 1 is equal to the integer minus 1. (Contributed by AV, 31-May-2020.)
Assertion
Ref Expression
logbpw2m1 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1))

Proof of Theorem logbpw2m1
StepHypRef Expression
1 2rp 12956 . . . . 5 2 ∈ ℝ+
21a1i 11 . . . 4 (𝐼 ∈ ℕ → 2 ∈ ℝ+)
3 2nn0 12459 . . . . . . . 8 2 ∈ ℕ0
43a1i 11 . . . . . . 7 (𝐼 ∈ ℕ → 2 ∈ ℕ0)
5 nnnn0 12449 . . . . . . 7 (𝐼 ∈ ℕ → 𝐼 ∈ ℕ0)
64, 5nn0expcld 14211 . . . . . 6 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℕ0)
7 nnge1 12214 . . . . . . 7 (𝐼 ∈ ℕ → 1 ≤ 𝐼)
8 2re 12260 . . . . . . . . . 10 2 ∈ ℝ
98a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ → 2 ∈ ℝ)
10 1zzd 12564 . . . . . . . . 9 (𝐼 ∈ ℕ → 1 ∈ ℤ)
11 nnz 12550 . . . . . . . . 9 (𝐼 ∈ ℕ → 𝐼 ∈ ℤ)
12 1lt2 12352 . . . . . . . . . 10 1 < 2
1312a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ → 1 < 2)
149, 10, 11, 13leexp2d 14217 . . . . . . . 8 (𝐼 ∈ ℕ → (1 ≤ 𝐼 ↔ (2↑1) ≤ (2↑𝐼)))
15 2cn 12261 . . . . . . . . . . 11 2 ∈ ℂ
16 exp1 14032 . . . . . . . . . . 11 (2 ∈ ℂ → (2↑1) = 2)
1715, 16ax-mp 5 . . . . . . . . . 10 (2↑1) = 2
1817a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ → (2↑1) = 2)
1918breq1d 5117 . . . . . . . 8 (𝐼 ∈ ℕ → ((2↑1) ≤ (2↑𝐼) ↔ 2 ≤ (2↑𝐼)))
2014, 19bitrd 279 . . . . . . 7 (𝐼 ∈ ℕ → (1 ≤ 𝐼 ↔ 2 ≤ (2↑𝐼)))
217, 20mpbid 232 . . . . . 6 (𝐼 ∈ ℕ → 2 ≤ (2↑𝐼))
22 nn0ge2m1nn 12512 . . . . . 6 (((2↑𝐼) ∈ ℕ0 ∧ 2 ≤ (2↑𝐼)) → ((2↑𝐼) − 1) ∈ ℕ)
236, 21, 22syl2anc 584 . . . . 5 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) ∈ ℕ)
2423nnrpd 12993 . . . 4 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) ∈ ℝ+)
25 1ne2 12389 . . . . . 6 1 ≠ 2
2625necomi 2979 . . . . 5 2 ≠ 1
2726a1i 11 . . . 4 (𝐼 ∈ ℕ → 2 ≠ 1)
28 relogbcl 26683 . . . 4 ((2 ∈ ℝ+ ∧ ((2↑𝐼) − 1) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb ((2↑𝐼) − 1)) ∈ ℝ)
292, 24, 27, 28syl3anc 1373 . . 3 (𝐼 ∈ ℕ → (2 logb ((2↑𝐼) − 1)) ∈ ℝ)
3029flcld 13760 . 2 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ)
31 peano2zm 12576 . . 3 (𝐼 ∈ ℤ → (𝐼 − 1) ∈ ℤ)
3211, 31syl 17 . 2 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℤ)
33 2z 12565 . . . . . . 7 2 ∈ ℤ
34 uzid 12808 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
3533, 34ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
36 nnlogbexp 26691 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ (𝐼 − 1) ∈ ℤ) → (2 logb (2↑(𝐼 − 1))) = (𝐼 − 1))
3735, 32, 36sylancr 587 . . . . 5 (𝐼 ∈ ℕ → (2 logb (2↑(𝐼 − 1))) = (𝐼 − 1))
3837fveq2d 6862 . . . 4 (𝐼 ∈ ℕ → (⌊‘(2 logb (2↑(𝐼 − 1)))) = (⌊‘(𝐼 − 1)))
39 flid 13770 . . . . 5 ((𝐼 − 1) ∈ ℤ → (⌊‘(𝐼 − 1)) = (𝐼 − 1))
4032, 39syl 17 . . . 4 (𝐼 ∈ ℕ → (⌊‘(𝐼 − 1)) = (𝐼 − 1))
4138, 40eqtrd 2764 . . 3 (𝐼 ∈ ℕ → (⌊‘(2 logb (2↑(𝐼 − 1)))) = (𝐼 − 1))
42 2nn 12259 . . . . . . . 8 2 ∈ ℕ
4342a1i 11 . . . . . . 7 (𝐼 ∈ ℕ → 2 ∈ ℕ)
44 nnm1nn0 12483 . . . . . . 7 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℕ0)
4543, 44nnexpcld 14210 . . . . . 6 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℕ)
4645nnrpd 12993 . . . . 5 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℝ+)
47 relogbcl 26683 . . . . 5 ((2 ∈ ℝ+ ∧ (2↑(𝐼 − 1)) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (2↑(𝐼 − 1))) ∈ ℝ)
482, 46, 27, 47syl3anc 1373 . . . 4 (𝐼 ∈ ℕ → (2 logb (2↑(𝐼 − 1))) ∈ ℝ)
49 pw2m1lepw2m1 48509 . . . . 5 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1))
5035a1i 11 . . . . . 6 (𝐼 ∈ ℕ → 2 ∈ (ℤ‘2))
51 logbleb 26693 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ (2↑(𝐼 − 1)) ∈ ℝ+ ∧ ((2↑𝐼) − 1) ∈ ℝ+) → ((2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1) ↔ (2 logb (2↑(𝐼 − 1))) ≤ (2 logb ((2↑𝐼) − 1))))
5250, 46, 24, 51syl3anc 1373 . . . . 5 (𝐼 ∈ ℕ → ((2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1) ↔ (2 logb (2↑(𝐼 − 1))) ≤ (2 logb ((2↑𝐼) − 1))))
5349, 52mpbid 232 . . . 4 (𝐼 ∈ ℕ → (2 logb (2↑(𝐼 − 1))) ≤ (2 logb ((2↑𝐼) − 1)))
54 flwordi 13774 . . . 4 (((2 logb (2↑(𝐼 − 1))) ∈ ℝ ∧ (2 logb ((2↑𝐼) − 1)) ∈ ℝ ∧ (2 logb (2↑(𝐼 − 1))) ≤ (2 logb ((2↑𝐼) − 1))) → (⌊‘(2 logb (2↑(𝐼 − 1)))) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))))
5548, 29, 53, 54syl3anc 1373 . . 3 (𝐼 ∈ ℕ → (⌊‘(2 logb (2↑(𝐼 − 1)))) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))))
5641, 55eqbrtrrd 5131 . 2 (𝐼 ∈ ℕ → (𝐼 − 1) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))))
5743, 5nnexpcld 14210 . . . . . . . . 9 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℕ)
5857nnnn0d 12503 . . . . . . . 8 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℕ0)
5958, 21, 22syl2anc 584 . . . . . . 7 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) ∈ ℕ)
6059nnrpd 12993 . . . . . 6 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) ∈ ℝ+)
612, 60, 27, 28syl3anc 1373 . . . . 5 (𝐼 ∈ ℕ → (2 logb ((2↑𝐼) − 1)) ∈ ℝ)
6261flcld 13760 . . . 4 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ)
6362zred 12638 . . 3 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℝ)
64 nnre 12193 . . . . 5 (𝐼 ∈ ℕ → 𝐼 ∈ ℝ)
65 peano2rem 11489 . . . . 5 (𝐼 ∈ ℝ → (𝐼 − 1) ∈ ℝ)
6664, 65syl 17 . . . 4 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℝ)
67 peano2re 11347 . . . 4 ((𝐼 − 1) ∈ ℝ → ((𝐼 − 1) + 1) ∈ ℝ)
6866, 67syl 17 . . 3 (𝐼 ∈ ℕ → ((𝐼 − 1) + 1) ∈ ℝ)
69 flle 13761 . . . 4 ((2 logb ((2↑𝐼) − 1)) ∈ ℝ → (⌊‘(2 logb ((2↑𝐼) − 1))) ≤ (2 logb ((2↑𝐼) − 1)))
7029, 69syl 17 . . 3 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) ≤ (2 logb ((2↑𝐼) − 1)))
7157nnrpd 12993 . . . . 5 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℝ+)
72 relogbcl 26683 . . . . 5 ((2 ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (2↑𝐼)) ∈ ℝ)
732, 71, 27, 72syl3anc 1373 . . . 4 (𝐼 ∈ ℕ → (2 logb (2↑𝐼)) ∈ ℝ)
7457nnred 12201 . . . . . 6 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℝ)
7574ltm1d 12115 . . . . 5 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) < (2↑𝐼))
76 logblt 26694 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ ((2↑𝐼) − 1) ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ+) → (((2↑𝐼) − 1) < (2↑𝐼) ↔ (2 logb ((2↑𝐼) − 1)) < (2 logb (2↑𝐼))))
7750, 24, 71, 76syl3anc 1373 . . . . 5 (𝐼 ∈ ℕ → (((2↑𝐼) − 1) < (2↑𝐼) ↔ (2 logb ((2↑𝐼) − 1)) < (2 logb (2↑𝐼))))
7875, 77mpbid 232 . . . 4 (𝐼 ∈ ℕ → (2 logb ((2↑𝐼) − 1)) < (2 logb (2↑𝐼)))
7964leidd 11744 . . . . 5 (𝐼 ∈ ℕ → 𝐼𝐼)
80 nnlogbexp 26691 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℤ) → (2 logb (2↑𝐼)) = 𝐼)
8135, 11, 80sylancr 587 . . . . 5 (𝐼 ∈ ℕ → (2 logb (2↑𝐼)) = 𝐼)
82 nncn 12194 . . . . . 6 (𝐼 ∈ ℕ → 𝐼 ∈ ℂ)
83 npcan1 11603 . . . . . 6 (𝐼 ∈ ℂ → ((𝐼 − 1) + 1) = 𝐼)
8482, 83syl 17 . . . . 5 (𝐼 ∈ ℕ → ((𝐼 − 1) + 1) = 𝐼)
8579, 81, 843brtr4d 5139 . . . 4 (𝐼 ∈ ℕ → (2 logb (2↑𝐼)) ≤ ((𝐼 − 1) + 1))
8629, 73, 68, 78, 85ltletrd 11334 . . 3 (𝐼 ∈ ℕ → (2 logb ((2↑𝐼) − 1)) < ((𝐼 − 1) + 1))
8763, 29, 68, 70, 86lelttrd 11332 . 2 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) < ((𝐼 − 1) + 1))
88 zgeltp1eq 47310 . . 3 (((⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ ∧ (𝐼 − 1) ∈ ℤ) → (((𝐼 − 1) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))) ∧ (⌊‘(2 logb ((2↑𝐼) − 1))) < ((𝐼 − 1) + 1)) → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1)))
8988imp 406 . 2 ((((⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ ∧ (𝐼 − 1) ∈ ℤ) ∧ ((𝐼 − 1) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))) ∧ (⌊‘(2 logb ((2↑𝐼) − 1))) < ((𝐼 − 1) + 1))) → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1))
9030, 32, 56, 87, 89syl22anc 838 1 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405  cn 12186  2c2 12241  0cn0 12442  cz 12529  cuz 12793  +crp 12951  cfl 13752  cexp 14026   logb clogb 26674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465  df-cxp 26466  df-logb 26675
This theorem is referenced by:  fllog2  48557  blenpw2m1  48568
  Copyright terms: Public domain W3C validator