Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  logbpw2m1 Structured version   Visualization version   GIF version

Theorem logbpw2m1 48560
Description: The floor of the binary logarithm of 2 to the power of a positive integer minus 1 is equal to the integer minus 1. (Contributed by AV, 31-May-2020.)
Assertion
Ref Expression
logbpw2m1 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1))

Proof of Theorem logbpw2m1
StepHypRef Expression
1 2rp 12963 . . . . 5 2 ∈ ℝ+
21a1i 11 . . . 4 (𝐼 ∈ ℕ → 2 ∈ ℝ+)
3 2nn0 12466 . . . . . . . 8 2 ∈ ℕ0
43a1i 11 . . . . . . 7 (𝐼 ∈ ℕ → 2 ∈ ℕ0)
5 nnnn0 12456 . . . . . . 7 (𝐼 ∈ ℕ → 𝐼 ∈ ℕ0)
64, 5nn0expcld 14218 . . . . . 6 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℕ0)
7 nnge1 12221 . . . . . . 7 (𝐼 ∈ ℕ → 1 ≤ 𝐼)
8 2re 12267 . . . . . . . . . 10 2 ∈ ℝ
98a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ → 2 ∈ ℝ)
10 1zzd 12571 . . . . . . . . 9 (𝐼 ∈ ℕ → 1 ∈ ℤ)
11 nnz 12557 . . . . . . . . 9 (𝐼 ∈ ℕ → 𝐼 ∈ ℤ)
12 1lt2 12359 . . . . . . . . . 10 1 < 2
1312a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ → 1 < 2)
149, 10, 11, 13leexp2d 14224 . . . . . . . 8 (𝐼 ∈ ℕ → (1 ≤ 𝐼 ↔ (2↑1) ≤ (2↑𝐼)))
15 2cn 12268 . . . . . . . . . . 11 2 ∈ ℂ
16 exp1 14039 . . . . . . . . . . 11 (2 ∈ ℂ → (2↑1) = 2)
1715, 16ax-mp 5 . . . . . . . . . 10 (2↑1) = 2
1817a1i 11 . . . . . . . . 9 (𝐼 ∈ ℕ → (2↑1) = 2)
1918breq1d 5120 . . . . . . . 8 (𝐼 ∈ ℕ → ((2↑1) ≤ (2↑𝐼) ↔ 2 ≤ (2↑𝐼)))
2014, 19bitrd 279 . . . . . . 7 (𝐼 ∈ ℕ → (1 ≤ 𝐼 ↔ 2 ≤ (2↑𝐼)))
217, 20mpbid 232 . . . . . 6 (𝐼 ∈ ℕ → 2 ≤ (2↑𝐼))
22 nn0ge2m1nn 12519 . . . . . 6 (((2↑𝐼) ∈ ℕ0 ∧ 2 ≤ (2↑𝐼)) → ((2↑𝐼) − 1) ∈ ℕ)
236, 21, 22syl2anc 584 . . . . 5 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) ∈ ℕ)
2423nnrpd 13000 . . . 4 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) ∈ ℝ+)
25 1ne2 12396 . . . . . 6 1 ≠ 2
2625necomi 2980 . . . . 5 2 ≠ 1
2726a1i 11 . . . 4 (𝐼 ∈ ℕ → 2 ≠ 1)
28 relogbcl 26690 . . . 4 ((2 ∈ ℝ+ ∧ ((2↑𝐼) − 1) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb ((2↑𝐼) − 1)) ∈ ℝ)
292, 24, 27, 28syl3anc 1373 . . 3 (𝐼 ∈ ℕ → (2 logb ((2↑𝐼) − 1)) ∈ ℝ)
3029flcld 13767 . 2 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ)
31 peano2zm 12583 . . 3 (𝐼 ∈ ℤ → (𝐼 − 1) ∈ ℤ)
3211, 31syl 17 . 2 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℤ)
33 2z 12572 . . . . . . 7 2 ∈ ℤ
34 uzid 12815 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
3533, 34ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
36 nnlogbexp 26698 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ (𝐼 − 1) ∈ ℤ) → (2 logb (2↑(𝐼 − 1))) = (𝐼 − 1))
3735, 32, 36sylancr 587 . . . . 5 (𝐼 ∈ ℕ → (2 logb (2↑(𝐼 − 1))) = (𝐼 − 1))
3837fveq2d 6865 . . . 4 (𝐼 ∈ ℕ → (⌊‘(2 logb (2↑(𝐼 − 1)))) = (⌊‘(𝐼 − 1)))
39 flid 13777 . . . . 5 ((𝐼 − 1) ∈ ℤ → (⌊‘(𝐼 − 1)) = (𝐼 − 1))
4032, 39syl 17 . . . 4 (𝐼 ∈ ℕ → (⌊‘(𝐼 − 1)) = (𝐼 − 1))
4138, 40eqtrd 2765 . . 3 (𝐼 ∈ ℕ → (⌊‘(2 logb (2↑(𝐼 − 1)))) = (𝐼 − 1))
42 2nn 12266 . . . . . . . 8 2 ∈ ℕ
4342a1i 11 . . . . . . 7 (𝐼 ∈ ℕ → 2 ∈ ℕ)
44 nnm1nn0 12490 . . . . . . 7 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℕ0)
4543, 44nnexpcld 14217 . . . . . 6 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℕ)
4645nnrpd 13000 . . . . 5 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ∈ ℝ+)
47 relogbcl 26690 . . . . 5 ((2 ∈ ℝ+ ∧ (2↑(𝐼 − 1)) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (2↑(𝐼 − 1))) ∈ ℝ)
482, 46, 27, 47syl3anc 1373 . . . 4 (𝐼 ∈ ℕ → (2 logb (2↑(𝐼 − 1))) ∈ ℝ)
49 pw2m1lepw2m1 48513 . . . . 5 (𝐼 ∈ ℕ → (2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1))
5035a1i 11 . . . . . 6 (𝐼 ∈ ℕ → 2 ∈ (ℤ‘2))
51 logbleb 26700 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ (2↑(𝐼 − 1)) ∈ ℝ+ ∧ ((2↑𝐼) − 1) ∈ ℝ+) → ((2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1) ↔ (2 logb (2↑(𝐼 − 1))) ≤ (2 logb ((2↑𝐼) − 1))))
5250, 46, 24, 51syl3anc 1373 . . . . 5 (𝐼 ∈ ℕ → ((2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1) ↔ (2 logb (2↑(𝐼 − 1))) ≤ (2 logb ((2↑𝐼) − 1))))
5349, 52mpbid 232 . . . 4 (𝐼 ∈ ℕ → (2 logb (2↑(𝐼 − 1))) ≤ (2 logb ((2↑𝐼) − 1)))
54 flwordi 13781 . . . 4 (((2 logb (2↑(𝐼 − 1))) ∈ ℝ ∧ (2 logb ((2↑𝐼) − 1)) ∈ ℝ ∧ (2 logb (2↑(𝐼 − 1))) ≤ (2 logb ((2↑𝐼) − 1))) → (⌊‘(2 logb (2↑(𝐼 − 1)))) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))))
5548, 29, 53, 54syl3anc 1373 . . 3 (𝐼 ∈ ℕ → (⌊‘(2 logb (2↑(𝐼 − 1)))) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))))
5641, 55eqbrtrrd 5134 . 2 (𝐼 ∈ ℕ → (𝐼 − 1) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))))
5743, 5nnexpcld 14217 . . . . . . . . 9 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℕ)
5857nnnn0d 12510 . . . . . . . 8 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℕ0)
5958, 21, 22syl2anc 584 . . . . . . 7 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) ∈ ℕ)
6059nnrpd 13000 . . . . . 6 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) ∈ ℝ+)
612, 60, 27, 28syl3anc 1373 . . . . 5 (𝐼 ∈ ℕ → (2 logb ((2↑𝐼) − 1)) ∈ ℝ)
6261flcld 13767 . . . 4 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ)
6362zred 12645 . . 3 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℝ)
64 nnre 12200 . . . . 5 (𝐼 ∈ ℕ → 𝐼 ∈ ℝ)
65 peano2rem 11496 . . . . 5 (𝐼 ∈ ℝ → (𝐼 − 1) ∈ ℝ)
6664, 65syl 17 . . . 4 (𝐼 ∈ ℕ → (𝐼 − 1) ∈ ℝ)
67 peano2re 11354 . . . 4 ((𝐼 − 1) ∈ ℝ → ((𝐼 − 1) + 1) ∈ ℝ)
6866, 67syl 17 . . 3 (𝐼 ∈ ℕ → ((𝐼 − 1) + 1) ∈ ℝ)
69 flle 13768 . . . 4 ((2 logb ((2↑𝐼) − 1)) ∈ ℝ → (⌊‘(2 logb ((2↑𝐼) − 1))) ≤ (2 logb ((2↑𝐼) − 1)))
7029, 69syl 17 . . 3 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) ≤ (2 logb ((2↑𝐼) − 1)))
7157nnrpd 13000 . . . . 5 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℝ+)
72 relogbcl 26690 . . . . 5 ((2 ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb (2↑𝐼)) ∈ ℝ)
732, 71, 27, 72syl3anc 1373 . . . 4 (𝐼 ∈ ℕ → (2 logb (2↑𝐼)) ∈ ℝ)
7457nnred 12208 . . . . . 6 (𝐼 ∈ ℕ → (2↑𝐼) ∈ ℝ)
7574ltm1d 12122 . . . . 5 (𝐼 ∈ ℕ → ((2↑𝐼) − 1) < (2↑𝐼))
76 logblt 26701 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ ((2↑𝐼) − 1) ∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ+) → (((2↑𝐼) − 1) < (2↑𝐼) ↔ (2 logb ((2↑𝐼) − 1)) < (2 logb (2↑𝐼))))
7750, 24, 71, 76syl3anc 1373 . . . . 5 (𝐼 ∈ ℕ → (((2↑𝐼) − 1) < (2↑𝐼) ↔ (2 logb ((2↑𝐼) − 1)) < (2 logb (2↑𝐼))))
7875, 77mpbid 232 . . . 4 (𝐼 ∈ ℕ → (2 logb ((2↑𝐼) − 1)) < (2 logb (2↑𝐼)))
7964leidd 11751 . . . . 5 (𝐼 ∈ ℕ → 𝐼𝐼)
80 nnlogbexp 26698 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℤ) → (2 logb (2↑𝐼)) = 𝐼)
8135, 11, 80sylancr 587 . . . . 5 (𝐼 ∈ ℕ → (2 logb (2↑𝐼)) = 𝐼)
82 nncn 12201 . . . . . 6 (𝐼 ∈ ℕ → 𝐼 ∈ ℂ)
83 npcan1 11610 . . . . . 6 (𝐼 ∈ ℂ → ((𝐼 − 1) + 1) = 𝐼)
8482, 83syl 17 . . . . 5 (𝐼 ∈ ℕ → ((𝐼 − 1) + 1) = 𝐼)
8579, 81, 843brtr4d 5142 . . . 4 (𝐼 ∈ ℕ → (2 logb (2↑𝐼)) ≤ ((𝐼 − 1) + 1))
8629, 73, 68, 78, 85ltletrd 11341 . . 3 (𝐼 ∈ ℕ → (2 logb ((2↑𝐼) − 1)) < ((𝐼 − 1) + 1))
8763, 29, 68, 70, 86lelttrd 11339 . 2 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) < ((𝐼 − 1) + 1))
88 zgeltp1eq 47314 . . 3 (((⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ ∧ (𝐼 − 1) ∈ ℤ) → (((𝐼 − 1) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))) ∧ (⌊‘(2 logb ((2↑𝐼) − 1))) < ((𝐼 − 1) + 1)) → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1)))
8988imp 406 . 2 ((((⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ ∧ (𝐼 − 1) ∈ ℤ) ∧ ((𝐼 − 1) ≤ (⌊‘(2 logb ((2↑𝐼) − 1))) ∧ (⌊‘(2 logb ((2↑𝐼) − 1))) < ((𝐼 − 1) + 1))) → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1))
9030, 32, 56, 87, 89syl22anc 838 1 (𝐼 ∈ ℕ → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412  cn 12193  2c2 12248  0cn0 12449  cz 12536  cuz 12800  +crp 12958  cfl 13759  cexp 14033   logb clogb 26681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-cxp 26473  df-logb 26682
This theorem is referenced by:  fllog2  48561  blenpw2m1  48572
  Copyright terms: Public domain W3C validator