Proof of Theorem logbpw2m1
Step | Hyp | Ref
| Expression |
1 | | 2rp 12735 |
. . . . 5
⊢ 2 ∈
ℝ+ |
2 | 1 | a1i 11 |
. . . 4
⊢ (𝐼 ∈ ℕ → 2 ∈
ℝ+) |
3 | | 2nn0 12250 |
. . . . . . . 8
⊢ 2 ∈
ℕ0 |
4 | 3 | a1i 11 |
. . . . . . 7
⊢ (𝐼 ∈ ℕ → 2 ∈
ℕ0) |
5 | | nnnn0 12240 |
. . . . . . 7
⊢ (𝐼 ∈ ℕ → 𝐼 ∈
ℕ0) |
6 | 4, 5 | nn0expcld 13961 |
. . . . . 6
⊢ (𝐼 ∈ ℕ →
(2↑𝐼) ∈
ℕ0) |
7 | | nnge1 12001 |
. . . . . . 7
⊢ (𝐼 ∈ ℕ → 1 ≤
𝐼) |
8 | | 2re 12047 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
9 | 8 | a1i 11 |
. . . . . . . . 9
⊢ (𝐼 ∈ ℕ → 2 ∈
ℝ) |
10 | | 1zzd 12351 |
. . . . . . . . 9
⊢ (𝐼 ∈ ℕ → 1 ∈
ℤ) |
11 | | nnz 12342 |
. . . . . . . . 9
⊢ (𝐼 ∈ ℕ → 𝐼 ∈
ℤ) |
12 | | 1lt2 12144 |
. . . . . . . . . 10
⊢ 1 <
2 |
13 | 12 | a1i 11 |
. . . . . . . . 9
⊢ (𝐼 ∈ ℕ → 1 <
2) |
14 | 9, 10, 11, 13 | leexp2d 13969 |
. . . . . . . 8
⊢ (𝐼 ∈ ℕ → (1 ≤
𝐼 ↔ (2↑1) ≤
(2↑𝐼))) |
15 | | 2cn 12048 |
. . . . . . . . . . 11
⊢ 2 ∈
ℂ |
16 | | exp1 13788 |
. . . . . . . . . . 11
⊢ (2 ∈
ℂ → (2↑1) = 2) |
17 | 15, 16 | ax-mp 5 |
. . . . . . . . . 10
⊢
(2↑1) = 2 |
18 | 17 | a1i 11 |
. . . . . . . . 9
⊢ (𝐼 ∈ ℕ →
(2↑1) = 2) |
19 | 18 | breq1d 5084 |
. . . . . . . 8
⊢ (𝐼 ∈ ℕ →
((2↑1) ≤ (2↑𝐼)
↔ 2 ≤ (2↑𝐼))) |
20 | 14, 19 | bitrd 278 |
. . . . . . 7
⊢ (𝐼 ∈ ℕ → (1 ≤
𝐼 ↔ 2 ≤
(2↑𝐼))) |
21 | 7, 20 | mpbid 231 |
. . . . . 6
⊢ (𝐼 ∈ ℕ → 2 ≤
(2↑𝐼)) |
22 | | nn0ge2m1nn 12302 |
. . . . . 6
⊢
(((2↑𝐼) ∈
ℕ0 ∧ 2 ≤ (2↑𝐼)) → ((2↑𝐼) − 1) ∈
ℕ) |
23 | 6, 21, 22 | syl2anc 584 |
. . . . 5
⊢ (𝐼 ∈ ℕ →
((2↑𝐼) − 1)
∈ ℕ) |
24 | 23 | nnrpd 12770 |
. . . 4
⊢ (𝐼 ∈ ℕ →
((2↑𝐼) − 1)
∈ ℝ+) |
25 | | 1ne2 12181 |
. . . . . 6
⊢ 1 ≠
2 |
26 | 25 | necomi 2998 |
. . . . 5
⊢ 2 ≠
1 |
27 | 26 | a1i 11 |
. . . 4
⊢ (𝐼 ∈ ℕ → 2 ≠
1) |
28 | | relogbcl 25923 |
. . . 4
⊢ ((2
∈ ℝ+ ∧ ((2↑𝐼) − 1) ∈ ℝ+
∧ 2 ≠ 1) → (2 logb ((2↑𝐼) − 1)) ∈
ℝ) |
29 | 2, 24, 27, 28 | syl3anc 1370 |
. . 3
⊢ (𝐼 ∈ ℕ → (2
logb ((2↑𝐼)
− 1)) ∈ ℝ) |
30 | 29 | flcld 13518 |
. 2
⊢ (𝐼 ∈ ℕ →
(⌊‘(2 logb ((2↑𝐼) − 1))) ∈
ℤ) |
31 | | peano2zm 12363 |
. . 3
⊢ (𝐼 ∈ ℤ → (𝐼 − 1) ∈
ℤ) |
32 | 11, 31 | syl 17 |
. 2
⊢ (𝐼 ∈ ℕ → (𝐼 − 1) ∈
ℤ) |
33 | | 2z 12352 |
. . . . . . 7
⊢ 2 ∈
ℤ |
34 | | uzid 12597 |
. . . . . . 7
⊢ (2 ∈
ℤ → 2 ∈ (ℤ≥‘2)) |
35 | 33, 34 | ax-mp 5 |
. . . . . 6
⊢ 2 ∈
(ℤ≥‘2) |
36 | | nnlogbexp 25931 |
. . . . . 6
⊢ ((2
∈ (ℤ≥‘2) ∧ (𝐼 − 1) ∈ ℤ) → (2
logb (2↑(𝐼
− 1))) = (𝐼 −
1)) |
37 | 35, 32, 36 | sylancr 587 |
. . . . 5
⊢ (𝐼 ∈ ℕ → (2
logb (2↑(𝐼
− 1))) = (𝐼 −
1)) |
38 | 37 | fveq2d 6778 |
. . . 4
⊢ (𝐼 ∈ ℕ →
(⌊‘(2 logb (2↑(𝐼 − 1)))) = (⌊‘(𝐼 − 1))) |
39 | | flid 13528 |
. . . . 5
⊢ ((𝐼 − 1) ∈ ℤ
→ (⌊‘(𝐼
− 1)) = (𝐼 −
1)) |
40 | 32, 39 | syl 17 |
. . . 4
⊢ (𝐼 ∈ ℕ →
(⌊‘(𝐼 −
1)) = (𝐼 −
1)) |
41 | 38, 40 | eqtrd 2778 |
. . 3
⊢ (𝐼 ∈ ℕ →
(⌊‘(2 logb (2↑(𝐼 − 1)))) = (𝐼 − 1)) |
42 | | 2nn 12046 |
. . . . . . . 8
⊢ 2 ∈
ℕ |
43 | 42 | a1i 11 |
. . . . . . 7
⊢ (𝐼 ∈ ℕ → 2 ∈
ℕ) |
44 | | nnm1nn0 12274 |
. . . . . . 7
⊢ (𝐼 ∈ ℕ → (𝐼 − 1) ∈
ℕ0) |
45 | 43, 44 | nnexpcld 13960 |
. . . . . 6
⊢ (𝐼 ∈ ℕ →
(2↑(𝐼 − 1))
∈ ℕ) |
46 | 45 | nnrpd 12770 |
. . . . 5
⊢ (𝐼 ∈ ℕ →
(2↑(𝐼 − 1))
∈ ℝ+) |
47 | | relogbcl 25923 |
. . . . 5
⊢ ((2
∈ ℝ+ ∧ (2↑(𝐼 − 1)) ∈ ℝ+
∧ 2 ≠ 1) → (2 logb (2↑(𝐼 − 1))) ∈
ℝ) |
48 | 2, 46, 27, 47 | syl3anc 1370 |
. . . 4
⊢ (𝐼 ∈ ℕ → (2
logb (2↑(𝐼
− 1))) ∈ ℝ) |
49 | | pw2m1lepw2m1 45861 |
. . . . 5
⊢ (𝐼 ∈ ℕ →
(2↑(𝐼 − 1)) ≤
((2↑𝐼) −
1)) |
50 | 35 | a1i 11 |
. . . . . 6
⊢ (𝐼 ∈ ℕ → 2 ∈
(ℤ≥‘2)) |
51 | | logbleb 25933 |
. . . . . 6
⊢ ((2
∈ (ℤ≥‘2) ∧ (2↑(𝐼 − 1)) ∈ ℝ+
∧ ((2↑𝐼) −
1) ∈ ℝ+) → ((2↑(𝐼 − 1)) ≤ ((2↑𝐼) − 1) ↔ (2 logb
(2↑(𝐼 − 1)))
≤ (2 logb ((2↑𝐼) − 1)))) |
52 | 50, 46, 24, 51 | syl3anc 1370 |
. . . . 5
⊢ (𝐼 ∈ ℕ →
((2↑(𝐼 − 1))
≤ ((2↑𝐼) − 1)
↔ (2 logb (2↑(𝐼 − 1))) ≤ (2 logb
((2↑𝐼) −
1)))) |
53 | 49, 52 | mpbid 231 |
. . . 4
⊢ (𝐼 ∈ ℕ → (2
logb (2↑(𝐼
− 1))) ≤ (2 logb ((2↑𝐼) − 1))) |
54 | | flwordi 13532 |
. . . 4
⊢ (((2
logb (2↑(𝐼
− 1))) ∈ ℝ ∧ (2 logb ((2↑𝐼) − 1)) ∈ ℝ ∧ (2
logb (2↑(𝐼
− 1))) ≤ (2 logb ((2↑𝐼) − 1))) → (⌊‘(2
logb (2↑(𝐼
− 1)))) ≤ (⌊‘(2 logb ((2↑𝐼) − 1)))) |
55 | 48, 29, 53, 54 | syl3anc 1370 |
. . 3
⊢ (𝐼 ∈ ℕ →
(⌊‘(2 logb (2↑(𝐼 − 1)))) ≤ (⌊‘(2
logb ((2↑𝐼)
− 1)))) |
56 | 41, 55 | eqbrtrrd 5098 |
. 2
⊢ (𝐼 ∈ ℕ → (𝐼 − 1) ≤
(⌊‘(2 logb ((2↑𝐼) − 1)))) |
57 | 43, 5 | nnexpcld 13960 |
. . . . . . . . 9
⊢ (𝐼 ∈ ℕ →
(2↑𝐼) ∈
ℕ) |
58 | 57 | nnnn0d 12293 |
. . . . . . . 8
⊢ (𝐼 ∈ ℕ →
(2↑𝐼) ∈
ℕ0) |
59 | 58, 21, 22 | syl2anc 584 |
. . . . . . 7
⊢ (𝐼 ∈ ℕ →
((2↑𝐼) − 1)
∈ ℕ) |
60 | 59 | nnrpd 12770 |
. . . . . 6
⊢ (𝐼 ∈ ℕ →
((2↑𝐼) − 1)
∈ ℝ+) |
61 | 2, 60, 27, 28 | syl3anc 1370 |
. . . . 5
⊢ (𝐼 ∈ ℕ → (2
logb ((2↑𝐼)
− 1)) ∈ ℝ) |
62 | 61 | flcld 13518 |
. . . 4
⊢ (𝐼 ∈ ℕ →
(⌊‘(2 logb ((2↑𝐼) − 1))) ∈
ℤ) |
63 | 62 | zred 12426 |
. . 3
⊢ (𝐼 ∈ ℕ →
(⌊‘(2 logb ((2↑𝐼) − 1))) ∈
ℝ) |
64 | | nnre 11980 |
. . . . 5
⊢ (𝐼 ∈ ℕ → 𝐼 ∈
ℝ) |
65 | | peano2rem 11288 |
. . . . 5
⊢ (𝐼 ∈ ℝ → (𝐼 − 1) ∈
ℝ) |
66 | 64, 65 | syl 17 |
. . . 4
⊢ (𝐼 ∈ ℕ → (𝐼 − 1) ∈
ℝ) |
67 | | peano2re 11148 |
. . . 4
⊢ ((𝐼 − 1) ∈ ℝ
→ ((𝐼 − 1) + 1)
∈ ℝ) |
68 | 66, 67 | syl 17 |
. . 3
⊢ (𝐼 ∈ ℕ → ((𝐼 − 1) + 1) ∈
ℝ) |
69 | | flle 13519 |
. . . 4
⊢ ((2
logb ((2↑𝐼)
− 1)) ∈ ℝ → (⌊‘(2 logb
((2↑𝐼) − 1)))
≤ (2 logb ((2↑𝐼) − 1))) |
70 | 29, 69 | syl 17 |
. . 3
⊢ (𝐼 ∈ ℕ →
(⌊‘(2 logb ((2↑𝐼) − 1))) ≤ (2 logb
((2↑𝐼) −
1))) |
71 | 57 | nnrpd 12770 |
. . . . 5
⊢ (𝐼 ∈ ℕ →
(2↑𝐼) ∈
ℝ+) |
72 | | relogbcl 25923 |
. . . . 5
⊢ ((2
∈ ℝ+ ∧ (2↑𝐼) ∈ ℝ+ ∧ 2 ≠ 1)
→ (2 logb (2↑𝐼)) ∈ ℝ) |
73 | 2, 71, 27, 72 | syl3anc 1370 |
. . . 4
⊢ (𝐼 ∈ ℕ → (2
logb (2↑𝐼))
∈ ℝ) |
74 | 57 | nnred 11988 |
. . . . . 6
⊢ (𝐼 ∈ ℕ →
(2↑𝐼) ∈
ℝ) |
75 | 74 | ltm1d 11907 |
. . . . 5
⊢ (𝐼 ∈ ℕ →
((2↑𝐼) − 1) <
(2↑𝐼)) |
76 | | logblt 25934 |
. . . . . 6
⊢ ((2
∈ (ℤ≥‘2) ∧ ((2↑𝐼) − 1) ∈ ℝ+
∧ (2↑𝐼) ∈
ℝ+) → (((2↑𝐼) − 1) < (2↑𝐼) ↔ (2 logb ((2↑𝐼) − 1)) < (2
logb (2↑𝐼)))) |
77 | 50, 24, 71, 76 | syl3anc 1370 |
. . . . 5
⊢ (𝐼 ∈ ℕ →
(((2↑𝐼) − 1)
< (2↑𝐼) ↔ (2
logb ((2↑𝐼)
− 1)) < (2 logb (2↑𝐼)))) |
78 | 75, 77 | mpbid 231 |
. . . 4
⊢ (𝐼 ∈ ℕ → (2
logb ((2↑𝐼)
− 1)) < (2 logb (2↑𝐼))) |
79 | 64 | leidd 11541 |
. . . . 5
⊢ (𝐼 ∈ ℕ → 𝐼 ≤ 𝐼) |
80 | | nnlogbexp 25931 |
. . . . . 6
⊢ ((2
∈ (ℤ≥‘2) ∧ 𝐼 ∈ ℤ) → (2 logb
(2↑𝐼)) = 𝐼) |
81 | 35, 11, 80 | sylancr 587 |
. . . . 5
⊢ (𝐼 ∈ ℕ → (2
logb (2↑𝐼))
= 𝐼) |
82 | | nncn 11981 |
. . . . . 6
⊢ (𝐼 ∈ ℕ → 𝐼 ∈
ℂ) |
83 | | npcan1 11400 |
. . . . . 6
⊢ (𝐼 ∈ ℂ → ((𝐼 − 1) + 1) = 𝐼) |
84 | 82, 83 | syl 17 |
. . . . 5
⊢ (𝐼 ∈ ℕ → ((𝐼 − 1) + 1) = 𝐼) |
85 | 79, 81, 84 | 3brtr4d 5106 |
. . . 4
⊢ (𝐼 ∈ ℕ → (2
logb (2↑𝐼))
≤ ((𝐼 − 1) +
1)) |
86 | 29, 73, 68, 78, 85 | ltletrd 11135 |
. . 3
⊢ (𝐼 ∈ ℕ → (2
logb ((2↑𝐼)
− 1)) < ((𝐼
− 1) + 1)) |
87 | 63, 29, 68, 70, 86 | lelttrd 11133 |
. 2
⊢ (𝐼 ∈ ℕ →
(⌊‘(2 logb ((2↑𝐼) − 1))) < ((𝐼 − 1) + 1)) |
88 | | zgeltp1eq 44801 |
. . 3
⊢
(((⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ ∧ (𝐼 − 1) ∈ ℤ)
→ (((𝐼 − 1) ≤
(⌊‘(2 logb ((2↑𝐼) − 1))) ∧ (⌊‘(2
logb ((2↑𝐼)
− 1))) < ((𝐼
− 1) + 1)) → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1))) |
89 | 88 | imp 407 |
. 2
⊢
((((⌊‘(2 logb ((2↑𝐼) − 1))) ∈ ℤ ∧ (𝐼 − 1) ∈ ℤ)
∧ ((𝐼 − 1) ≤
(⌊‘(2 logb ((2↑𝐼) − 1))) ∧ (⌊‘(2
logb ((2↑𝐼)
− 1))) < ((𝐼
− 1) + 1))) → (⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1)) |
90 | 30, 32, 56, 87, 89 | syl22anc 836 |
1
⊢ (𝐼 ∈ ℕ →
(⌊‘(2 logb ((2↑𝐼) − 1))) = (𝐼 − 1)) |