Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > znbas2 | Structured version Visualization version GIF version |
Description: The base set of ℤ/nℤ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.) |
Ref | Expression |
---|---|
znval2.s | ⊢ 𝑆 = (RSpan‘ℤring) |
znval2.u | ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) |
znval2.y | ⊢ 𝑌 = (ℤ/nℤ‘𝑁) |
Ref | Expression |
---|---|
znbas2 | ⊢ (𝑁 ∈ ℕ0 → (Base‘𝑈) = (Base‘𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | znval2.s | . 2 ⊢ 𝑆 = (RSpan‘ℤring) | |
2 | znval2.u | . 2 ⊢ 𝑈 = (ℤring /s (ℤring ~QG (𝑆‘{𝑁}))) | |
3 | znval2.y | . 2 ⊢ 𝑌 = (ℤ/nℤ‘𝑁) | |
4 | df-base 16789 | . 2 ⊢ Base = Slot 1 | |
5 | 1nn 11866 | . 2 ⊢ 1 ∈ ℕ | |
6 | 1lt10 12457 | . 2 ⊢ 1 < ;10 | |
7 | 1, 2, 3, 4, 5, 6 | znbaslem 20531 | 1 ⊢ (𝑁 ∈ ℕ0 → (Base‘𝑈) = (Base‘𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2111 {csn 4556 ‘cfv 6398 (class class class)co 7232 1c1 10755 ℕ0cn0 12115 Basecbs 16788 /s cqus 17038 ~QG cqg 18567 RSpancrsp 20236 ℤringzring 20463 ℤ/nℤczn 20497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 ax-addf 10833 ax-mulf 10834 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-om 7664 df-1st 7780 df-2nd 7781 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-1o 8223 df-er 8412 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-nn 11856 df-2 11918 df-3 11919 df-4 11920 df-5 11921 df-6 11922 df-7 11923 df-8 11924 df-9 11925 df-n0 12116 df-z 12202 df-dec 12319 df-uz 12464 df-fz 13121 df-struct 16728 df-sets 16745 df-slot 16763 df-ndx 16773 df-base 16789 df-ress 16813 df-plusg 16843 df-mulr 16844 df-starv 16845 df-tset 16849 df-ple 16850 df-ds 16852 df-unif 16853 df-0g 16974 df-mgm 18142 df-sgrp 18191 df-mnd 18202 df-grp 18396 df-minusg 18397 df-subg 18568 df-cmn 19200 df-mgp 19533 df-ur 19545 df-ring 19592 df-cring 19593 df-subrg 19826 df-cnfld 20392 df-zring 20464 df-zn 20501 |
This theorem is referenced by: znzrh 20535 znbas 20536 zncrng 20537 |
Copyright terms: Public domain | W3C validator |