Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blennn0e2 Structured version   Visualization version   GIF version

Theorem blennn0e2 46754
Description: The binary length of an even positive integer is the binary length of the half of the integer, increased by 1. (Contributed by AV, 29-May-2020.)
Assertion
Ref Expression
blennn0e2 ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (#b𝑁) = ((#b‘(𝑁 / 2)) + 1))

Proof of Theorem blennn0e2
StepHypRef Expression
1 2rp 12927 . . . . . . . 8 2 ∈ ℝ+
2 1ne2 12368 . . . . . . . . 9 1 ≠ 2
32necomi 2999 . . . . . . . 8 2 ≠ 1
4 eldifsn 4752 . . . . . . . 8 (2 ∈ (ℝ+ ∖ {1}) ↔ (2 ∈ ℝ+ ∧ 2 ≠ 1))
51, 3, 4mpbir2an 710 . . . . . . 7 2 ∈ (ℝ+ ∖ {1})
6 nnrp 12933 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
76adantr 482 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → 𝑁 ∈ ℝ+)
8 relogbdivb 46722 . . . . . . 7 ((2 ∈ (ℝ+ ∖ {1}) ∧ 𝑁 ∈ ℝ+) → (2 logb (𝑁 / 2)) = ((2 logb 𝑁) − 1))
95, 7, 8sylancr 588 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (2 logb (𝑁 / 2)) = ((2 logb 𝑁) − 1))
109fveq2d 6851 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (⌊‘(2 logb (𝑁 / 2))) = (⌊‘((2 logb 𝑁) − 1)))
1110oveq1d 7377 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘(2 logb (𝑁 / 2))) + 1) = ((⌊‘((2 logb 𝑁) − 1)) + 1))
121a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
133a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ≠ 1)
14 relogbcl 26139 . . . . . . . . 9 ((2 ∈ ℝ+𝑁 ∈ ℝ+ ∧ 2 ≠ 1) → (2 logb 𝑁) ∈ ℝ)
1512, 6, 13, 14syl3anc 1372 . . . . . . . 8 (𝑁 ∈ ℕ → (2 logb 𝑁) ∈ ℝ)
16 1zzd 12541 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℤ)
1715, 16jca 513 . . . . . . 7 (𝑁 ∈ ℕ → ((2 logb 𝑁) ∈ ℝ ∧ 1 ∈ ℤ))
1817adantr 482 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → ((2 logb 𝑁) ∈ ℝ ∧ 1 ∈ ℤ))
19 flsubz 46677 . . . . . 6 (((2 logb 𝑁) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘((2 logb 𝑁) − 1)) = ((⌊‘(2 logb 𝑁)) − 1))
2018, 19syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (⌊‘((2 logb 𝑁) − 1)) = ((⌊‘(2 logb 𝑁)) − 1))
2120oveq1d 7377 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘((2 logb 𝑁) − 1)) + 1) = (((⌊‘(2 logb 𝑁)) − 1) + 1))
2215flcld 13710 . . . . . . 7 (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℤ)
2322zcnd 12615 . . . . . 6 (𝑁 ∈ ℕ → (⌊‘(2 logb 𝑁)) ∈ ℂ)
24 npcan1 11587 . . . . . 6 ((⌊‘(2 logb 𝑁)) ∈ ℂ → (((⌊‘(2 logb 𝑁)) − 1) + 1) = (⌊‘(2 logb 𝑁)))
2523, 24syl 17 . . . . 5 (𝑁 ∈ ℕ → (((⌊‘(2 logb 𝑁)) − 1) + 1) = (⌊‘(2 logb 𝑁)))
2625adantr 482 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (((⌊‘(2 logb 𝑁)) − 1) + 1) = (⌊‘(2 logb 𝑁)))
2711, 21, 263eqtrd 2781 . . 3 ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → ((⌊‘(2 logb (𝑁 / 2))) + 1) = (⌊‘(2 logb 𝑁)))
2827oveq1d 7377 . 2 ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (((⌊‘(2 logb (𝑁 / 2))) + 1) + 1) = ((⌊‘(2 logb 𝑁)) + 1))
29 nn0enne 16266 . . . 4 (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ))
3029biimpa 478 . . 3 ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (𝑁 / 2) ∈ ℕ)
31 blennn 46735 . . . 4 ((𝑁 / 2) ∈ ℕ → (#b‘(𝑁 / 2)) = ((⌊‘(2 logb (𝑁 / 2))) + 1))
3231oveq1d 7377 . . 3 ((𝑁 / 2) ∈ ℕ → ((#b‘(𝑁 / 2)) + 1) = (((⌊‘(2 logb (𝑁 / 2))) + 1) + 1))
3330, 32syl 17 . 2 ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → ((#b‘(𝑁 / 2)) + 1) = (((⌊‘(2 logb (𝑁 / 2))) + 1) + 1))
34 blennn 46735 . . 3 (𝑁 ∈ ℕ → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
3534adantr 482 . 2 ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (#b𝑁) = ((⌊‘(2 logb 𝑁)) + 1))
3628, 33, 353eqtr4rd 2788 1 ((𝑁 ∈ ℕ ∧ (𝑁 / 2) ∈ ℕ0) → (#b𝑁) = ((#b‘(𝑁 / 2)) + 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2944  cdif 3912  {csn 4591  cfv 6501  (class class class)co 7362  cc 11056  cr 11057  1c1 11059   + caddc 11061  cmin 11392   / cdiv 11819  cn 12160  2c2 12215  0cn0 12420  cz 12506  +crp 12922  cfl 13702   logb clogb 26130  #bcblen 46729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136  ax-addf 11137  ax-mulf 11138
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-supp 8098  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-er 8655  df-map 8774  df-pm 8775  df-ixp 8843  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-fsupp 9313  df-fi 9354  df-sup 9385  df-inf 9386  df-oi 9453  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-5 12226  df-6 12227  df-7 12228  df-8 12229  df-9 12230  df-n0 12421  df-z 12507  df-dec 12626  df-uz 12771  df-q 12881  df-rp 12923  df-xneg 13040  df-xadd 13041  df-xmul 13042  df-ioo 13275  df-ioc 13276  df-ico 13277  df-icc 13278  df-fz 13432  df-fzo 13575  df-fl 13704  df-mod 13782  df-seq 13914  df-exp 13975  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14959  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-limsup 15360  df-clim 15377  df-rlim 15378  df-sum 15578  df-ef 15957  df-sin 15959  df-cos 15960  df-pi 15962  df-struct 17026  df-sets 17043  df-slot 17061  df-ndx 17073  df-base 17091  df-ress 17120  df-plusg 17153  df-mulr 17154  df-starv 17155  df-sca 17156  df-vsca 17157  df-ip 17158  df-tset 17159  df-ple 17160  df-ds 17162  df-unif 17163  df-hom 17164  df-cco 17165  df-rest 17311  df-topn 17312  df-0g 17330  df-gsum 17331  df-topgen 17332  df-pt 17333  df-prds 17336  df-xrs 17391  df-qtop 17396  df-imas 17397  df-xps 17399  df-mre 17473  df-mrc 17474  df-acs 17476  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-submnd 18609  df-mulg 18880  df-cntz 19104  df-cmn 19571  df-psmet 20804  df-xmet 20805  df-met 20806  df-bl 20807  df-mopn 20808  df-fbas 20809  df-fg 20810  df-cnfld 20813  df-top 22259  df-topon 22276  df-topsp 22298  df-bases 22312  df-cld 22386  df-ntr 22387  df-cls 22388  df-nei 22465  df-lp 22503  df-perf 22504  df-cn 22594  df-cnp 22595  df-haus 22682  df-tx 22929  df-hmeo 23122  df-fil 23213  df-fm 23305  df-flim 23306  df-flf 23307  df-xms 23689  df-ms 23690  df-tms 23691  df-cncf 24257  df-limc 25246  df-dv 25247  df-log 25928  df-cxp 25929  df-logb 26131  df-blen 46730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator