![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gausslemma2dlem0b | Structured version Visualization version GIF version |
Description: Auxiliary lemma 2 for gausslemma2d 25320. (Contributed by AV, 9-Jul-2021.) |
Ref | Expression |
---|---|
gausslemma2dlem0a.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
gausslemma2dlem0b.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
Ref | Expression |
---|---|
gausslemma2dlem0b | ⊢ (𝜑 → 𝐻 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2dlem0b.h | . 2 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
2 | gausslemma2dlem0a.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
3 | eldifi 3883 | . . . . . 6 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
4 | prmuz2 15615 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ≥‘2)) |
6 | nnoddn2prm 15723 | . . . . . 6 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) | |
7 | nnoddm1d2 15310 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 + 1) / 2) ∈ ℕ)) | |
8 | 7 | biimpa 462 | . . . . . . 7 ⊢ ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 + 1) / 2) ∈ ℕ) |
9 | 8 | nnnn0d 11553 | . . . . . 6 ⊢ ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 + 1) / 2) ∈ ℕ0) |
10 | 6, 9 | syl 17 | . . . . 5 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 + 1) / 2) ∈ ℕ0) |
11 | 5, 10 | jca 501 | . . . 4 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ (ℤ≥‘2) ∧ ((𝑃 + 1) / 2) ∈ ℕ0)) |
12 | 2, 11 | syl 17 | . . 3 ⊢ (𝜑 → (𝑃 ∈ (ℤ≥‘2) ∧ ((𝑃 + 1) / 2) ∈ ℕ0)) |
13 | nno 15306 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ ((𝑃 + 1) / 2) ∈ ℕ0) → ((𝑃 − 1) / 2) ∈ ℕ) | |
14 | 12, 13 | syl 17 | . 2 ⊢ (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ) |
15 | 1, 14 | syl5eqel 2854 | 1 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∖ cdif 3720 {csn 4316 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 1c1 10139 + caddc 10141 − cmin 10468 / cdiv 10886 ℕcn 11222 2c2 11272 ℕ0cn0 11494 ℤ≥cuz 11888 ∥ cdvds 15189 ℙcprime 15592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-sup 8504 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-n0 11495 df-z 11580 df-uz 11889 df-rp 12036 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-dvds 15190 df-prm 15593 |
This theorem is referenced by: gausslemma2dlem0c 25304 gausslemma2dlem0h 25309 gausslemma2dlem1 25312 gausslemma2dlem2 25313 gausslemma2dlem6 25318 gausslemma2dlem7 25319 gausslemma2d 25320 |
Copyright terms: Public domain | W3C validator |