![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gausslemma2dlem0b | Structured version Visualization version GIF version |
Description: Auxiliary lemma 2 for gausslemma2d 25551. (Contributed by AV, 9-Jul-2021.) |
Ref | Expression |
---|---|
gausslemma2dlem0a.p | ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) |
gausslemma2dlem0b.h | ⊢ 𝐻 = ((𝑃 − 1) / 2) |
Ref | Expression |
---|---|
gausslemma2dlem0b | ⊢ (𝜑 → 𝐻 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2dlem0b.h | . 2 ⊢ 𝐻 = ((𝑃 − 1) / 2) | |
2 | gausslemma2dlem0a.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (ℙ ∖ {2})) | |
3 | eldifi 3955 | . . . . . 6 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ) | |
4 | prmuz2 15813 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ (ℤ≥‘2)) |
6 | nnoddn2prm 15920 | . . . . . 6 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) | |
7 | nnoddm1d2 15516 | . . . . . . . 8 ⊢ (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 + 1) / 2) ∈ ℕ)) | |
8 | 7 | biimpa 470 | . . . . . . 7 ⊢ ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 + 1) / 2) ∈ ℕ) |
9 | 8 | nnnn0d 11702 | . . . . . 6 ⊢ ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 + 1) / 2) ∈ ℕ0) |
10 | 6, 9 | syl 17 | . . . . 5 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 + 1) / 2) ∈ ℕ0) |
11 | 5, 10 | jca 507 | . . . 4 ⊢ (𝑃 ∈ (ℙ ∖ {2}) → (𝑃 ∈ (ℤ≥‘2) ∧ ((𝑃 + 1) / 2) ∈ ℕ0)) |
12 | 2, 11 | syl 17 | . . 3 ⊢ (𝜑 → (𝑃 ∈ (ℤ≥‘2) ∧ ((𝑃 + 1) / 2) ∈ ℕ0)) |
13 | nno 15512 | . . 3 ⊢ ((𝑃 ∈ (ℤ≥‘2) ∧ ((𝑃 + 1) / 2) ∈ ℕ0) → ((𝑃 − 1) / 2) ∈ ℕ) | |
14 | 12, 13 | syl 17 | . 2 ⊢ (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ) |
15 | 1, 14 | syl5eqel 2863 | 1 ⊢ (𝜑 → 𝐻 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∖ cdif 3789 {csn 4398 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 1c1 10273 + caddc 10275 − cmin 10606 / cdiv 11032 ℕcn 11374 2c2 11430 ℕ0cn0 11642 ℤ≥cuz 11992 ∥ cdvds 15387 ℙcprime 15790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-sup 8636 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-n0 11643 df-z 11729 df-uz 11993 df-rp 12138 df-seq 13120 df-exp 13179 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-dvds 15388 df-prm 15791 |
This theorem is referenced by: gausslemma2dlem0c 25535 gausslemma2dlem0h 25540 gausslemma2dlem1 25543 gausslemma2dlem2 25544 gausslemma2dlem6 25549 gausslemma2dlem7 25550 gausslemma2d 25551 |
Copyright terms: Public domain | W3C validator |