MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0oddm1d2 Structured version   Visualization version   GIF version

Theorem nn0oddm1d2 16300
Description: A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.) (Proof shortened by AV, 10-Jul-2022.)
Assertion
Ref Expression
nn0oddm1d2 (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))

Proof of Theorem nn0oddm1d2
StepHypRef Expression
1 nn0z 12501 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 oddp1d2 16273 . . 3 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ))
31, 2syl 17 . 2 (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ))
4 peano2nn0 12430 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
54nn0red 12452 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
6 2rp 12899 . . . . . . . 8 2 ∈ ℝ+
76a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → 2 ∈ ℝ+)
8 nn0re 12399 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
9 1red 11122 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
10 nn0ge0 12415 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
11 0le1 11649 . . . . . . . . 9 0 ≤ 1
1211a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ 1)
138, 9, 10, 12addge0d 11702 . . . . . . 7 (𝑁 ∈ ℕ0 → 0 ≤ (𝑁 + 1))
145, 7, 13divge0d 12978 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ≤ ((𝑁 + 1) / 2))
1514anim1ci 616 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑁 + 1) / 2)))
16 elnn0z 12490 . . . . 5 (((𝑁 + 1) / 2) ∈ ℕ0 ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑁 + 1) / 2)))
1715, 16sylibr 234 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℕ0)
1817ex 412 . . 3 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℕ0))
19 nn0z 12501 . . 3 (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ)
2018, 19impbid1 225 . 2 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℕ0))
21 nn0ob 16299 . 2 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))
223, 20, 213bitrd 305 1 (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2113   class class class wbr 5095  (class class class)co 7354  0cc0 11015  1c1 11016   + caddc 11018  cle 11156  cmin 11353   / cdiv 11783  2c2 12189  0cn0 12390  cz 12477  +crp 12894  cdvds 16167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-dvds 16168
This theorem is referenced by:  leibpilem1  26880  gausslemma2dlem6  27313
  Copyright terms: Public domain W3C validator