MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0oddm1d2 Structured version   Visualization version   GIF version

Theorem nn0oddm1d2 16419
Description: A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.) (Proof shortened by AV, 10-Jul-2022.)
Assertion
Ref Expression
nn0oddm1d2 (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))

Proof of Theorem nn0oddm1d2
StepHypRef Expression
1 nn0z 12636 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 oddp1d2 16392 . . 3 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ))
31, 2syl 17 . 2 (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ))
4 peano2nn0 12564 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
54nn0red 12586 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
6 2rp 13037 . . . . . . . 8 2 ∈ ℝ+
76a1i 11 . . . . . . 7 (𝑁 ∈ ℕ0 → 2 ∈ ℝ+)
8 nn0re 12533 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
9 1red 11260 . . . . . . . 8 (𝑁 ∈ ℕ0 → 1 ∈ ℝ)
10 nn0ge0 12549 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
11 0le1 11784 . . . . . . . . 9 0 ≤ 1
1211a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ 1)
138, 9, 10, 12addge0d 11837 . . . . . . 7 (𝑁 ∈ ℕ0 → 0 ≤ (𝑁 + 1))
145, 7, 13divge0d 13115 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ≤ ((𝑁 + 1) / 2))
1514anim1ci 616 . . . . 5 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑁 + 1) / 2)))
16 elnn0z 12624 . . . . 5 (((𝑁 + 1) / 2) ∈ ℕ0 ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 ≤ ((𝑁 + 1) / 2)))
1715, 16sylibr 234 . . . 4 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℕ0)
1817ex 412 . . 3 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℕ0))
19 nn0z 12636 . . 3 (((𝑁 + 1) / 2) ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℤ)
2018, 19impbid1 225 . 2 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℕ0))
21 nn0ob 16418 . 2 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))
223, 20, 213bitrd 305 1 (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2106   class class class wbr 5148  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156  cle 11294  cmin 11490   / cdiv 11918  2c2 12319  0cn0 12524  cz 12611  +crp 13032  cdvds 16287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-dvds 16288
This theorem is referenced by:  leibpilem1  26998  gausslemma2dlem6  27431
  Copyright terms: Public domain W3C validator