MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divgt0d Structured version   Visualization version   GIF version

Theorem divgt0d 12145
Description: The ratio of two positive numbers is positive. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltp1d.1 (𝜑𝐴 ∈ ℝ)
divgt0d.2 (𝜑𝐵 ∈ ℝ)
divgt0d.3 (𝜑 → 0 < 𝐴)
divgt0d.4 (𝜑 → 0 < 𝐵)
Assertion
Ref Expression
divgt0d (𝜑 → 0 < (𝐴 / 𝐵))

Proof of Theorem divgt0d
StepHypRef Expression
1 ltp1d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 divgt0d.3 . 2 (𝜑 → 0 < 𝐴)
3 divgt0d.2 . 2 (𝜑𝐵 ∈ ℝ)
4 divgt0d.4 . 2 (𝜑 → 0 < 𝐵)
5 divgt0 12078 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵))
61, 2, 3, 4, 5syl22anc 838 1 (𝜑 → 0 < (𝐴 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107   class class class wbr 5147  (class class class)co 7404  cr 11105  0cc0 11106   < clt 11244   / cdiv 11867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868
This theorem is referenced by:  gtndiv  12635  nndivdvds  16202  nnoddm1d2  16325  bitsfzo  16372  sqgcd  16498  qredeu  16591  pythagtriplem19  16762  pcadd  16818  znidomb  21101  tangtx  25997  cos02pilt1  26017  cosne0  26020  jensenlem2  26472  bposlem6  26772  lgseisenlem1  26858  2sqlem8  26909  omssubadd  33237  knoppndvlem19  35344  knoppndvlem21  35346  itg2addnclem  36477  3lexlogpow2ineq2  40862  3lexlogpow5ineq5  40863  oexpreposd  41155  flt4lem6  41344  pellexlem2  41501  sumnnodd  44281  sinaover2ne0  44519  ioodvbdlimc1lem1  44582  ioodvbdlimc1lem2  44583  ioodvbdlimc2lem  44585  stoweidlem36  44687  stoweidlem52  44703  dirkertrigeqlem3  44751  fourierdlem24  44782  fourierdlem79  44836  hoiqssbllem2  45274  nneven  46301  blennngt2o2  47180
  Copyright terms: Public domain W3C validator