![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divgt0d | Structured version Visualization version GIF version |
Description: The ratio of two positive numbers is positive. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
divgt0d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
divgt0d.3 | ⊢ (𝜑 → 0 < 𝐴) |
divgt0d.4 | ⊢ (𝜑 → 0 < 𝐵) |
Ref | Expression |
---|---|
divgt0d | ⊢ (𝜑 → 0 < (𝐴 / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltp1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | divgt0d.3 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
3 | divgt0d.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | divgt0d.4 | . 2 ⊢ (𝜑 → 0 < 𝐵) | |
5 | divgt0 11222 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵)) | |
6 | 1, 2, 3, 4, 5 | syl22anc 874 | 1 ⊢ (𝜑 → 0 < (𝐴 / 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2166 class class class wbr 4874 (class class class)co 6906 ℝcr 10252 0cc0 10253 < clt 10392 / cdiv 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-po 5264 df-so 5265 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-div 11011 |
This theorem is referenced by: gtndiv 11783 nndivdvds 15367 nnoddm1d2 15477 bitsfzo 15531 sqgcd 15652 qredeu 15745 pythagtriplem19 15910 pcadd 15965 znidomb 20270 tangtx 24658 cosne0 24677 jensenlem2 25128 bposlem6 25428 lgseisenlem1 25514 2sqlem8 25565 omssubadd 30908 knoppndvlem19 33054 knoppndvlem21 33056 itg2addnclem 34005 oexpreposd 38069 pellexlem2 38239 sumnnodd 40658 sinaover2ne0 40875 ioodvbdlimc1lem1 40942 ioodvbdlimc1lem2 40943 ioodvbdlimc2lem 40945 stoweidlem36 41048 stoweidlem52 41064 dirkertrigeqlem3 41112 fourierdlem24 41143 fourierdlem79 41197 hoiqssbllem2 41632 blennngt2o2 43234 |
Copyright terms: Public domain | W3C validator |