MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divgt0d Structured version   Visualization version   GIF version

Theorem divgt0d 11840
Description: The ratio of two positive numbers is positive. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltp1d.1 (𝜑𝐴 ∈ ℝ)
divgt0d.2 (𝜑𝐵 ∈ ℝ)
divgt0d.3 (𝜑 → 0 < 𝐴)
divgt0d.4 (𝜑 → 0 < 𝐵)
Assertion
Ref Expression
divgt0d (𝜑 → 0 < (𝐴 / 𝐵))

Proof of Theorem divgt0d
StepHypRef Expression
1 ltp1d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 divgt0d.3 . 2 (𝜑 → 0 < 𝐴)
3 divgt0d.2 . 2 (𝜑𝐵 ∈ ℝ)
4 divgt0d.4 . 2 (𝜑 → 0 < 𝐵)
5 divgt0 11773 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵))
61, 2, 3, 4, 5syl22anc 835 1 (𝜑 → 0 < (𝐴 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5070  (class class class)co 7255  cr 10801  0cc0 10802   < clt 10940   / cdiv 11562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563
This theorem is referenced by:  gtndiv  12327  nndivdvds  15900  nnoddm1d2  16023  bitsfzo  16070  sqgcd  16198  qredeu  16291  pythagtriplem19  16462  pcadd  16518  znidomb  20681  tangtx  25567  cos02pilt1  25587  cosne0  25590  jensenlem2  26042  bposlem6  26342  lgseisenlem1  26428  2sqlem8  26479  omssubadd  32167  knoppndvlem19  34637  knoppndvlem21  34639  itg2addnclem  35755  3lexlogpow2ineq2  39995  3lexlogpow5ineq5  39996  oexpreposd  40242  flt4lem6  40411  pellexlem2  40568  sumnnodd  43061  sinaover2ne0  43299  ioodvbdlimc1lem1  43362  ioodvbdlimc1lem2  43363  ioodvbdlimc2lem  43365  stoweidlem36  43467  stoweidlem52  43483  dirkertrigeqlem3  43531  fourierdlem24  43562  fourierdlem79  43616  hoiqssbllem2  44051  nneven  45038  blennngt2o2  45826
  Copyright terms: Public domain W3C validator