Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divgt0d | Structured version Visualization version GIF version |
Description: The ratio of two positive numbers is positive. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
divgt0d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
divgt0d.3 | ⊢ (𝜑 → 0 < 𝐴) |
divgt0d.4 | ⊢ (𝜑 → 0 < 𝐵) |
Ref | Expression |
---|---|
divgt0d | ⊢ (𝜑 → 0 < (𝐴 / 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltp1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | divgt0d.3 | . 2 ⊢ (𝜑 → 0 < 𝐴) | |
3 | divgt0d.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | divgt0d.4 | . 2 ⊢ (𝜑 → 0 < 𝐵) | |
5 | divgt0 11598 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵)) | |
6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → 0 < (𝐴 / 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2114 class class class wbr 5040 (class class class)co 7182 ℝcr 10626 0cc0 10627 < clt 10765 / cdiv 11387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-mpt 5121 df-id 5439 df-po 5452 df-so 5453 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-er 8332 df-en 8568 df-dom 8569 df-sdom 8570 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-div 11388 |
This theorem is referenced by: gtndiv 12152 nndivdvds 15720 nnoddm1d2 15843 bitsfzo 15890 sqgcd 16018 qredeu 16111 pythagtriplem19 16282 pcadd 16337 znidomb 20392 tangtx 25262 cos02pilt1 25282 cosne0 25285 jensenlem2 25737 bposlem6 26037 lgseisenlem1 26123 2sqlem8 26174 omssubadd 31849 knoppndvlem19 34365 knoppndvlem21 34367 itg2addnclem 35483 3lexlogpow2ineq2 39719 3lexlogpow5ineq5 39720 oexpreposd 39937 flt4lem6 40107 pellexlem2 40264 sumnnodd 42753 sinaover2ne0 42991 ioodvbdlimc1lem1 43054 ioodvbdlimc1lem2 43055 ioodvbdlimc2lem 43057 stoweidlem36 43159 stoweidlem52 43175 dirkertrigeqlem3 43223 fourierdlem24 43254 fourierdlem79 43308 hoiqssbllem2 43743 nneven 44731 blennngt2o2 45519 |
Copyright terms: Public domain | W3C validator |