MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divgt0d Structured version   Visualization version   GIF version

Theorem divgt0d 11910
Description: The ratio of two positive numbers is positive. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltp1d.1 (𝜑𝐴 ∈ ℝ)
divgt0d.2 (𝜑𝐵 ∈ ℝ)
divgt0d.3 (𝜑 → 0 < 𝐴)
divgt0d.4 (𝜑 → 0 < 𝐵)
Assertion
Ref Expression
divgt0d (𝜑 → 0 < (𝐴 / 𝐵))

Proof of Theorem divgt0d
StepHypRef Expression
1 ltp1d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 divgt0d.3 . 2 (𝜑 → 0 < 𝐴)
3 divgt0d.2 . 2 (𝜑𝐵 ∈ ℝ)
4 divgt0d.4 . 2 (𝜑 → 0 < 𝐵)
5 divgt0 11843 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵))
61, 2, 3, 4, 5syl22anc 836 1 (𝜑 → 0 < (𝐴 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   class class class wbr 5074  (class class class)co 7275  cr 10870  0cc0 10871   < clt 11009   / cdiv 11632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633
This theorem is referenced by:  gtndiv  12397  nndivdvds  15972  nnoddm1d2  16095  bitsfzo  16142  sqgcd  16270  qredeu  16363  pythagtriplem19  16534  pcadd  16590  znidomb  20769  tangtx  25662  cos02pilt1  25682  cosne0  25685  jensenlem2  26137  bposlem6  26437  lgseisenlem1  26523  2sqlem8  26574  omssubadd  32267  knoppndvlem19  34710  knoppndvlem21  34712  itg2addnclem  35828  3lexlogpow2ineq2  40067  3lexlogpow5ineq5  40068  oexpreposd  40321  flt4lem6  40495  pellexlem2  40652  sumnnodd  43171  sinaover2ne0  43409  ioodvbdlimc1lem1  43472  ioodvbdlimc1lem2  43473  ioodvbdlimc2lem  43475  stoweidlem36  43577  stoweidlem52  43593  dirkertrigeqlem3  43641  fourierdlem24  43672  fourierdlem79  43726  hoiqssbllem2  44161  nneven  45150  blennngt2o2  45938
  Copyright terms: Public domain W3C validator