![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oddpwp1fsum | Structured version Visualization version GIF version |
Description: An odd power of a number increased by 1 expressed by a product with a finite sum. (Contributed by AV, 15-Aug-2021.) |
Ref | Expression |
---|---|
pwp1fsum.a | โข (๐ โ ๐ด โ โ) |
pwp1fsum.n | โข (๐ โ ๐ โ โ) |
oddpwp1fsum.n | โข (๐ โ ยฌ 2 โฅ ๐) |
Ref | Expression |
---|---|
oddpwp1fsum | โข (๐ โ ((๐ดโ๐) + 1) = ((๐ด + 1) ยท ฮฃ๐ โ (0...(๐ โ 1))((-1โ๐) ยท (๐ดโ๐)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oddpwp1fsum.n | . . . . . 6 โข (๐ โ ยฌ 2 โฅ ๐) | |
2 | pwp1fsum.n | . . . . . . . 8 โข (๐ โ ๐ โ โ) | |
3 | 2 | nnzd 12601 | . . . . . . 7 โข (๐ โ ๐ โ โค) |
4 | oddm1even 16305 | . . . . . . 7 โข (๐ โ โค โ (ยฌ 2 โฅ ๐ โ 2 โฅ (๐ โ 1))) | |
5 | 3, 4 | syl 17 | . . . . . 6 โข (๐ โ (ยฌ 2 โฅ ๐ โ 2 โฅ (๐ โ 1))) |
6 | 1, 5 | mpbid 231 | . . . . 5 โข (๐ โ 2 โฅ (๐ โ 1)) |
7 | m1expe 16336 | . . . . 5 โข (2 โฅ (๐ โ 1) โ (-1โ(๐ โ 1)) = 1) | |
8 | 6, 7 | syl 17 | . . . 4 โข (๐ โ (-1โ(๐ โ 1)) = 1) |
9 | 8 | oveq1d 7429 | . . 3 โข (๐ โ ((-1โ(๐ โ 1)) ยท (๐ดโ๐)) = (1 ยท (๐ดโ๐))) |
10 | 9 | oveq1d 7429 | . 2 โข (๐ โ (((-1โ(๐ โ 1)) ยท (๐ดโ๐)) + 1) = ((1 ยท (๐ดโ๐)) + 1)) |
11 | pwp1fsum.a | . . 3 โข (๐ โ ๐ด โ โ) | |
12 | 11, 2 | pwp1fsum 16353 | . 2 โข (๐ โ (((-1โ(๐ โ 1)) ยท (๐ดโ๐)) + 1) = ((๐ด + 1) ยท ฮฃ๐ โ (0...(๐ โ 1))((-1โ๐) ยท (๐ดโ๐)))) |
13 | 2 | nnnn0d 12548 | . . . . 5 โข (๐ โ ๐ โ โ0) |
14 | 11, 13 | expcld 14128 | . . . 4 โข (๐ โ (๐ดโ๐) โ โ) |
15 | 14 | mullidd 11248 | . . 3 โข (๐ โ (1 ยท (๐ดโ๐)) = (๐ดโ๐)) |
16 | 15 | oveq1d 7429 | . 2 โข (๐ โ ((1 ยท (๐ดโ๐)) + 1) = ((๐ดโ๐) + 1)) |
17 | 10, 12, 16 | 3eqtr3rd 2776 | 1 โข (๐ โ ((๐ดโ๐) + 1) = ((๐ด + 1) ยท ฮฃ๐ โ (0...(๐ โ 1))((-1โ๐) ยท (๐ดโ๐)))) |
Colors of variables: wff setvar class |
Syntax hints: ยฌ wn 3 โ wi 4 โ wb 205 = wceq 1534 โ wcel 2099 class class class wbr 5142 (class class class)co 7414 โcc 11122 0cc0 11124 1c1 11125 + caddc 11127 ยท cmul 11129 โ cmin 11460 -cneg 11461 โcn 12228 2c2 12283 โคcz 12574 ...cfz 13502 โcexp 14044 ฮฃcsu 15650 โฅ cdvds 16216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-inf2 9650 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-sup 9451 df-oi 9519 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-2 12291 df-3 12292 df-n0 12489 df-z 12575 df-uz 12839 df-rp 12993 df-fz 13503 df-fzo 13646 df-seq 13985 df-exp 14045 df-hash 14308 df-cj 15064 df-re 15065 df-im 15066 df-sqrt 15200 df-abs 15201 df-clim 15450 df-sum 15651 df-dvds 16217 |
This theorem is referenced by: lighneallem4b 46862 lighneallem4 46863 |
Copyright terms: Public domain | W3C validator |