Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > om1elbas | Structured version Visualization version GIF version |
Description: Elementhood in the base set of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.) |
Ref | Expression |
---|---|
om1bas.o | ⊢ 𝑂 = (𝐽 Ω1 𝑌) |
om1bas.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
om1bas.y | ⊢ (𝜑 → 𝑌 ∈ 𝑋) |
om1bas.b | ⊢ (𝜑 → 𝐵 = (Base‘𝑂)) |
Ref | Expression |
---|---|
om1elbas | ⊢ (𝜑 → (𝐹 ∈ 𝐵 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om1bas.o | . . . 4 ⊢ 𝑂 = (𝐽 Ω1 𝑌) | |
2 | om1bas.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
3 | om1bas.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑋) | |
4 | om1bas.b | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝑂)) | |
5 | 1, 2, 3, 4 | om1bas 24175 | . . 3 ⊢ (𝜑 → 𝐵 = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}) |
6 | 5 | eleq2d 2825 | . 2 ⊢ (𝜑 → (𝐹 ∈ 𝐵 ↔ 𝐹 ∈ {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)})) |
7 | fveq1 6767 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘0) = (𝐹‘0)) | |
8 | 7 | eqeq1d 2741 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓‘0) = 𝑌 ↔ (𝐹‘0) = 𝑌)) |
9 | fveq1 6767 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (𝑓‘1) = (𝐹‘1)) | |
10 | 9 | eqeq1d 2741 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑓‘1) = 𝑌 ↔ (𝐹‘1) = 𝑌)) |
11 | 8, 10 | anbi12d 630 | . . . 4 ⊢ (𝑓 = 𝐹 → (((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ↔ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌))) |
12 | 11 | elrab 3625 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} ↔ (𝐹 ∈ (II Cn 𝐽) ∧ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌))) |
13 | 3anass 1093 | . . 3 ⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌) ↔ (𝐹 ∈ (II Cn 𝐽) ∧ ((𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌))) | |
14 | 12, 13 | bitr4i 277 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)} ↔ (𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌)) |
15 | 6, 14 | bitrdi 286 | 1 ⊢ (𝜑 → (𝐹 ∈ 𝐵 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 {crab 3069 ‘cfv 6430 (class class class)co 7268 0cc0 10855 1c1 10856 Basecbs 16893 TopOnctopon 22040 Cn ccn 22356 IIcii 24019 Ω1 comi 24145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-uz 12565 df-fz 13222 df-struct 16829 df-slot 16864 df-ndx 16876 df-base 16894 df-plusg 16956 df-tset 16962 df-topon 22041 df-om1 24150 |
This theorem is referenced by: om1addcl 24177 pi1blem 24183 pi1eluni 24186 |
Copyright terms: Public domain | W3C validator |