MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzind4i Structured version   Visualization version   GIF version

Theorem uzind4i 12932
Description: Induction on the upper integers that start at 𝑀. The first four give us the substitution instances we need, and the last two are the basis and the induction step. This is a stronger version of uzind4 12928 assuming that 𝜓 holds unconditionally. Notice that 𝑁 ∈ (ℤ𝑀) implies that the lower bound 𝑀 is an integer (𝑀 ∈ ℤ, see eluzel2 12865). (Contributed by NM, 4-Sep-2005.) (Revised by AV, 13-Jul-2022.)
Hypotheses
Ref Expression
uzind4i.1 (𝑗 = 𝑀 → (𝜑𝜓))
uzind4i.2 (𝑗 = 𝑘 → (𝜑𝜒))
uzind4i.3 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
uzind4i.4 (𝑗 = 𝑁 → (𝜑𝜏))
uzind4i.5 𝜓
uzind4i.6 (𝑘 ∈ (ℤ𝑀) → (𝜒𝜃))
Assertion
Ref Expression
uzind4i (𝑁 ∈ (ℤ𝑀) → 𝜏)
Distinct variable groups:   𝑗,𝑁   𝜓,𝑗   𝜒,𝑗   𝜃,𝑗   𝜏,𝑗   𝜑,𝑘   𝑗,𝑘,𝑀
Allowed substitution hints:   𝜑(𝑗)   𝜓(𝑘)   𝜒(𝑘)   𝜃(𝑘)   𝜏(𝑘)   𝑁(𝑘)

Proof of Theorem uzind4i
StepHypRef Expression
1 uzind4i.1 . 2 (𝑗 = 𝑀 → (𝜑𝜓))
2 uzind4i.2 . 2 (𝑗 = 𝑘 → (𝜑𝜒))
3 uzind4i.3 . 2 (𝑗 = (𝑘 + 1) → (𝜑𝜃))
4 uzind4i.4 . 2 (𝑗 = 𝑁 → (𝜑𝜏))
5 uzind4i.5 . . 3 𝜓
65a1i 11 . 2 (𝑀 ∈ ℤ → 𝜓)
7 uzind4i.6 . 2 (𝑘 ∈ (ℤ𝑀) → (𝜒𝜃))
81, 2, 3, 4, 6, 7uzind4 12928 1 (𝑁 ∈ (ℤ𝑀) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  cfv 6553  (class class class)co 7426  1c1 11147   + caddc 11149  cz 12596  cuz 12860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861
This theorem is referenced by:  uzwo  12933  om2uzrani  13957  seqfveq2  14029  monoord  14037  seqhomo  14054  leexp2r  14178  cvgrat  15869  ntrivcvgfvn0  15885  ruclem9  16222  dvdsfac  16310  smuval2  16464  smupvallem  16465  prmreclem4  16895  vdwlem13  16969  2expltfac  17069  telgsumfzs  19951  aaliou3lem2  26298  chtub  27165  bclbnd  27233
  Copyright terms: Public domain W3C validator